深度学习基础
文章平均质量分 89
MistaCloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytorch基础知识Ⅳ之自动求导autograd
包为张量上的所有运算提供了自动微分机制,它是 PyTorch 能够实现“定义即运行 (Define-by-Run)”的核心原因。原因:Autograd 依赖前向传播的原始值来算梯度,原地修改会破坏“犯罪现场”,导致计算失败。下面给出的例子中,张量由用户手动创建,因此grad_fn返回结果是None。autograd 会自动沿计算图反向传播,并计算。每个非叶子节点张量(由运算得到的张量)都有一个。之后参与的运算,才会被autograd追踪。,所有的后续节点(输出)都会自动变为。在深度学习中,训练的核心是。原创 2025-12-29 09:00:00 · 1480 阅读 · 0 评论 -
Pytorch基础知识Ⅲ之计算图与动态图机制
以上述的计算为例:y.grad_fn = <MulBackward 0>,a.grad_fn = <AddBackward 0>,b.grad_fn = <AddBackward 0>。动态图和静态图就好比我们去国外旅游,动态图就是自己规划出行方式、游玩行程等,而静态图就是跟团走,路线固定,不灵活但高效。构建这样的计算图是很方便求解梯度的,以对w求偏导为例,计算图是用来描述运算的有向无环图(DAG),它包含了。,可以理解为 Tensor,而。原创 2025-12-27 10:00:00 · 783 阅读 · 0 评论 -
Pytorch基础知识Ⅱ之张量Tensor操作(很全面)
🧠 PyTorch Tensor 操作的三条铁律①是否拷贝数据,不看“函数名”,看storage 是否共享②→ 改的是元数据(shape / stride),不是数据dtype 改变device 改变明确的 clone()原创 2025-12-26 09:15:00 · 1109 阅读 · 0 评论 -
Pytorch基础知识之张量Tensor的本质
以单个元素索引为例子,各维度索引值 × stride 的加和相等(等于线性内存偏移),无论一维、二维、多维。如下9这个元素在1维的索引是8,2维的索引是[2][0],3维的索引是[1][1][0]。从不同的角度看,叫法不同。深度学习角度看张量,本质上就是多维数组ndarray。先拆成两份,在对每一份拆成三份,剩下的自动拆分。N维数组是机器学习和神经网络的主要数据结构。这么多括号,看的人有点乱,下面说点直观。这么多括号,看的不舒服,我们来拆分。先拆成三份,再自动拆成了四份。原创 2025-12-25 08:30:00 · 1481 阅读 · 0 评论
分享