6SSMN961 – Applied Econometrics Assessment 1 – Individual Midterm CourseworkJava

部署运行你感兴趣的模型镜像

Java Python 6SSMN961 – Applied Econometrics

Assessment 1 – Individual Midterm Coursework

(20% of total module grade)

Lead Instructor:

FilipaSá

Instructor’s email:

Filipa.sa@kcl.ac.uk

Submission Deadline:

The midterm coursework will be posted on KEATS   at 10:00 amon Tuesday   5th November and will

be due by 10:00 amon   Thursday 7th November 2024.

Submission checklist

1.    The file format is a pdf and contains two

parts: written answers to the questions and    the STATA output.

2.    File saved as

Candidatenumber.pdf

3.    Word count is 1,000 words, excluding

STATA output and the cover sheet.

Assessment 2 – Individual Final Coursework

(80% of total module grade)

Lead Instructor:

FilipaSá

Instructor’s email:

Filipa.sa@kcl.ac.uk

Submission Deadline:

The final coursework will be posted on KEATS at

10:00 amon Monday 9th December and will be

due by 10:00 amon

Friday 13th  December 2024.

Submission checklist

1.    The file format is a pdf and contains two

parts: written answers to the questions and    the STATA output.

2.    File saved as

Candidatenumber.pdf

3.    Word count is 2,000 words, excluding

STATA output and the cover sheet.

The Task

Both the midterm and the final coursework are empirical exercises. You will be given datasets and questions to answer based on those datasets. The questions are based on papers published in economics journals.

Module Learning Outcomes Assessed

1.    Systematic understanding of the econometric methods covered in the module;

2.    Ability to apply these methods to economic problems;

3.    Proficiency using STATA and ability to debug STATA codes and research new commands to prepare and analyse data.

Assignment Details and Structure

Your submission should include the following:

1.    written answers to the questions

2.    the STATA output file

General Submission Requirements

Assessment submission instructions:

1.    File saved as Candidatenumber.pdf

2.    Word count (1,000 words for the midterm coursework and 2,000 for the final coursework)

3.    File format for submission: pdf

Assessment Support Information

Formative feedback will be provided during tutorials. In addition to the tutorial problem sets, there are  examples and exercises (with suggested answers) on KEATS, which will help you test your knowledge as you study the material.

On the KEATS page, under module information, you can find a sample exam paper and sample scripts from 2017/18. This past exam paper is excellent practice for your assessment.

Marking Criteria

Please consult the rubric template on page 3

Aspect/Weighting

F (0-39)

D (40-49)

C (50-59)

B (60-69)

A (70+)

Midterm

coursework, 20%

Final coursework, 80%

Mostly incorrect and/or

incomplete answers, showing

little or < 6SSMN961 – Applied Econometrics Assessment 1 – Individual Midterm CourseworkJava /span>no understanding of the models and methods covered in the lectures and tutorials. There is insufficient reference to the     literature.

The coursework is disorganised and unclear.

Answers show only cursory

understanding of the models and methods covered in the lectures   and tutorials. For example,

students fail to estimate the  relevant econometric model. Answers are not sufficiently   linked to relevant academic   papers.

The coursework is adequately   presented and generally logical but could be clearer and more   organised.

Answers demonstrate some

knowledge of the models and

methods covered in the lectures and tutorials but are incomplete or contain incorrect

interpretations. Students show

evidence of having read some of   the relevant academic papers but may not have fully understood

the analysis in those readings.

Students show a reasonable

ability to code in Stata but may struggle to independently

research how to use commands  that have not already been used in tutorials.

The coursework is presented with some structure but could be

clearer and more organised.

Answers demonstrate a good

understanding of the models and methods covered in the lectures   and tutorials but are not fully

complete or contain some

mistakes. For example, students

estimate the relevant econometric model but do not interpret the

results correctly or do not discuss the limitations of the model.

Students should link their answers to relevant readings (e.g.

academic papers) and show a solid understanding of those readings,    even if some of the detailed

analysis in those papers may not be fully understood. Students

demonstrate good ability to code in Stata, even if they fail to use

some commands that have not already been used in tutorials.

The coursework is coherent, well   organised and logically presented.

Answers demonstrate a thorough knowledge of the models and

methods covered in the lectures and tutorials. Answers are

complete and contain clear and intuitive explanations. Students should link their answers to

relevant readings (e.g. academic papers) and show a good

understanding of those readings.

The Stata output is well

presented, with the correct

commands used throughout. Students show an ability to

research new Stata commands and apply those commands

correctly.

The coursework is well structured and written in a clear and fluent    style         

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值