MGMT20005-Business Decision Analysis 2Java

Java Python MGMT20005-Business Decision Analysis

Assignment 2: Group Assignment

Introduction: This is a group assignment of up to 3 students (1-3 students) from the same tutorial group. You are also allowed to form. a group with students of the same tutor. Note that if the group is formed with students of different tutors, you will receive zero marks for this assignment. You can complete your assignment individually, if you wish, however, you are strongly encouraged to complete this assessment in a group setting.

Weight: 25% of the total mark.

Format: PowerPoint file (.pptx/.pdf) + Recorded presentation (.mp4) + Excel workbook (.xlsx). Due date: 6pm Friday, Week 11.

Submission: Only one submission (with all your files) is required for each group. Make sure you include the names and student numbers for all team members on the front slide of your PowerPoint file submission, otherwise, a penalty will be applied!

Late submission: It will attract a marking penalty. A 10% penalty will be applied for every day of late submission for up to 3 days. Assignments submitted later than 3 days after the due date will not be marked and will receive no mark.

Extension request: No extension will be provided for this assignment (since this is a group submission, no extension will be provided even for individual work).

Submission format and word limit:

1.   Prepare your submission using Microsoft PowerPoint (or similar presentation software). You can use up to 30 slides and up to 2,500 words in your slides altogether (excluding figures, tables, references, and appendices, however  the  30  slides  limit still applies). Your  slides  should  be well-organised,  coherent,  and visually appealing. Note that it is important to cover all below the requirements in your submission.

2.   A maximum of 5-minute recorded presentation outlining your analysis and assessment of your  portfolio optimisation methods used. You may choose to use the same deck of slides that you and your group have put together (or a revised slide deck) if you find this suitable and appropriate for the 5-minute presentation. You must submit an .mp4 file (or similar) for your video presentation and it is a requirement to show your face/s in your presentation recording.

Assignment Details

This assignment is designed to let you explore and evaluate a number of approaches for portfolio optimisation, using live   real-world    data   from   the Yahoo   finance   website.   The    relevant    URL   for   finding   stock    prices   is https://au.finance.yahoo.com/.  Under  the “Quote  lookup”, you  can  search for  the  industry/business you  are interested in to explore investment (assets).

Portfolio Optimisation - Risk and Return: An investment portfolio consists of a collection of investment items (or stocks or assets) held by an individual or organisation, in which the investor seeks to purchase a variety of assets to gain a good return (profit) through increasing assets value. Individual assets vary in value from minute to minute, and whilst over time, they might grow in value, their value fluctuates over time. The possibility of such fluctuations represents a risk to the investor. Accordingly in portfolio selection, investors should wisely choose to invest across a range of assets, ideally those total value is less liable to fluctuation than the individual assets.

In this assignment, you are required to use asset return data from a period of 4 years to identify the optimum portfolio using a variety of different optimisation methods. The assignment report (slides) should include three main sections: Preliminary Work, Optimisation Models and Conclusion. The requirements of each part are detailed below.

The breakdown of marks (a total of 25) is given on this document and as a Rubric in Canvas.

Preliminary Work (3 marks: Data collection + Classifications)

The first stage is to identify a set of 12 investment items from which you will subsequently determine optimum portfolios using various optimisation models. You may select any global assets (including indices) whose data is provided on the Yahoo finance website. After you searched for the stock under the “Quote lookup”, go to the “ Historical data” tab, then choose the appropriate Time period, and Frequency before downloading the data.

Note: If you have problem to download data from Yahoo, you can copy and paste the data directly from the website into an Excel document.

The chosen assets must satisfy the following general conditions:

.    Each  must  have  at  least 48  months (August 2020 - August 2024) of monthly data available, up to and including August 2024.

.    They should be selected from any 4 different sectors/categories of your choice (let’s call them S1, S2, S3, and S4) e.g., banking, pharmaceuticals, media, technology, government bonds, property trusts, etc., with at least 2 assets in each category. Provide clear justification and reasoning for your choices.

.    You     need    to     calculate     the monthly     return     of     each     asset by     (Stock_value_new     – Stock_value_old)/(Stock_value_old). Then the average return of an asset is the mean of return of that asset over 48 months. Similarly, the risk is calculated as the standard deviation of return over 48 months. A sample Excel file is provided that includes sample data with the calculation of return and risk.

.    Data  should span a  reasonable range of volatilities/risks. Classify the assets into 4 groups according to (ascending) risk (let’s call them R1, R2, R3, and R4). A simple classification approach would be to calculate the standard deviation of each asset (as explained in the previous dot point) and define risk categories based on the 4 quartiles. Therefore, R1 should include investment stocks with the lowest risk (lowest standard deviation).

.    Recall that each asset lies in one of the Rs and in one of the Ss.

Optimisation Models

The assignment requires you to consider two different optimisation techniques: linear programming and integer linear programming.  For  each  optimisation  model,  explain the  optimisation  approach taken, the  mathematical formulation and identify how the Excel Solver is to be used (explain any constraints used – e.g., that a variable needs to be an integer or binary and include any necessary screenshots of how Excel Solver is implemented on your slides).

. LP model (9 marks: Mathematical Model + Excel Solver and Reports + Discussion): In this approach, the aim is to achieve the maximum overall return of the portfolio, subject to specified requirements on risk mix (percentages in R1 to R4) and category mix (percentages in S1 to S4). Note that the overall return of a portfolio (or its expected return) is calculated as a weighted average of the expected returns of all assets, where the weights represent the proportions of the portfolio that should be invested in each asset.

The following investment guidelines are to be applied to the Linear Programming model: (1) Investment in the highest-risk assets shouldn’t exceed 15% of the portfolio, while the lowest risk (or equal lowest) assets should have the highest (equal or highest) investments among all other risk categories, (2) To ensure diversification, each sector category must have a minimum of 15% invested; apart from one sector that you choose (your discretion) to have a minimum of 25% invested, (3) The minimum investment in each asset should be 5%.

Use Excel’s reports to comment on binding constraints, a MGMT20005-Business Decision Analysis Assignment 2Java nd the impacts of changes to the risk and category constraints on the optimum portfolio (sensitivity analysis). Further, if an asset(s) is not selected in your optimal solution, explain how much its return should be changed, so that asset can be included in your optimal selection.

. ILP model (5 marks: Mathematical Model + Excel Solver and Discussion): In this approach, we assume that a balanced portfolio of exactly 7 stocks is to  be chosen. The 4 asset categories (the S classification) must  be included. In addition, at most 1 of the assets can be in the riskiest group, and at least 2 must be in the least risky group. Finally, an asset from R3 can be selected only if at least one asset from R2 is selected.

Conclusion (4 marks: comparison + conclusion + overall presentation)

Summarise your work (of all the above parts), present all your results comparatively, coherently and compellingly. Then, based on your assessment of the various approaches, briefly explain a strategy that you might prefer to use for this portfolio optimisation problem. Include a summary table detailing each chosen portfolio and the basis of choice, compare each of your chosen portfolios. You may wish to discuss any shortcomings of the utilised optimisation techniques.

Recorded 5-minute Presentation (4 marks)

Your  task  is  to  create  a  concise  5-minute  recorded  presentation  about  portfolio  optimisation  strategies. You can imagine you are addressing a distinguished panel of executives at a leading investment firm. Begin by providing  a  comprehensive  overview  of  your  carefully  selected  12  investment  items,  showcasing  your  keen understanding  of the  market  landscape.  Afterward,  briefly  explain  a  preferred  portfolio  optimisation  strategy, providing  reasons  for  your  choice  and   including  a  summary  table  comparing  each  selected   portfolio.  This presentation should showcase your understanding of investment strategies and your ability to communicate them effectively. You may choose to use the same deck of slides that you and your group have put together to support your presentation, if you find this suitable and appropriate.

Begin by providing an overview of your investment items and then assess the two approaches you have examined above  using  real-time  data  from  Yahoo  Finance.  Afterward,  briefly explain  a  preferred  portfolio  optimisation strategy, providing reasons for your choice and including a summary table comparing each selected portfolio. This presentation should showcase your understanding of investment strategies and your ability to communicate them effectively. You may choose to use the same deck of slides that you and your group have put together to support your presentation, if you find this suitable and appropriate.

You must submit an mp4 file (or similar) for your video presentation. We recommend using Zoom (see Zoom Recording Basics) to record your video presentation, but you may use another tool of your choice and then upload the video file into Canvas in the submission tool with your presentation slides. It is a requirement to show your face/s in your presentation recording.

Marking guide

Assignments will be marked based on the methodologies adopted and the quality of work. Given the vast range of assets to select from on the Yahoo website, it is highly unlikely that you will choose the same portfolio of stocks as another student group.

It is important to pay special attention to spelling, grammar, and punctuation to avoid ambiguity and confusion. Students can include relevant graphs, tables, and other exhibits such as appendices. They must be clearly labelled and will not be included in the word count.

Marking Scheme for Assignment 1

Files

Marks

Prelim – 3 marks

Data acquisition, background and description

Excel & PowerPoint

2

Classifications, explanation of procedure

Excel & PowerPoint

1

Linear Programming – 9 marks

Mathematical model

PowerPoint

3

Solver, results and discussion

Excel & PowerPoint

3

Sensitivity Analysis and discussion

Excel & PowerPoint

3

Integer Linear Programming – 5 marks

Mathematical model

PowerPoint

3

Solver, results and discussion

Excel & PowerPoint

2

Overall Discussion and Conclusion – 4 marks

Comparison, conclusion, and overall presentation

PowerPoint

4

Recorded Presentation – 4 marks

MP4 file

4

TOTAL – 25 marks

25

Feedback prior to submission: Students can seek assistance from the teaching staff to ascertain whether their assignment conforms to submission guidelines through:

- Discussion board (Canvas): as other students can also benefit from your questions and replies.

- Consultation: with prior arrangement with your tutor or lecturer.

Feedback after submission: Your assignment feedback will be returned within two weeks of the due date in a rubric on the LMS site with an overall mark and intext/overall comments         

本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于非支配排序的蜣螂优化算法(NSDBO)在微电网多目标优化调度中的应用展开研究,提出了一种改进的智能优化算法以解决微电网系统中经济性、环保性和能源效率等多重目标之间的权衡问题。通过引入非支配排序机制,NSDBO能够有效处理多目标优化中的帕累托前沿搜索,提升解的多样性和收敛性,并结合Matlab代码实现仿真验证,展示了该算法在微电网调度中的优越性能和实际可行性。研究涵盖了微电网典型结构建模、目标函数构建及约束条件处理,实现了对风、光、储能及传统机组的协同优化调度。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能优化算法应用的工程技术人员;熟悉优化算法与能源系统调度的高年级本科生亦可参考。; 使用场景及目标:①应用于微电网多目标优化调度问题的研究与仿真,如成本最小化、碳排放最低与供电可靠性最高之间的平衡;②为新型智能优化算法(如蜣螂优化算法及其改进版本)的设计与验证提供实践案例,推动其在能源系统中的推广应用;③服务于学术论文复现、课题研究或毕业设计中的算法对比与性能测试。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注NSDBO算法的核心实现步骤与微电网模型的构建逻辑,同时可对比其他多目标算法(如NSGA-II、MOPSO)以深入理解其优势与局限,进一步开展算法改进或应用场景拓展。
内容概要:本文详细介绍了使用ENVI与SARscape软件进行DInSAR(差分干涉合成孔径雷达)技术处理的完整流程,涵盖从数据导入、预处理、干涉图生成、相位滤波与相干性分析、相位解缠、轨道精炼与重去平,到最终相位转形变及结果可视化在内的全部关键步骤。文中以Sentinel-1数据为例,系统阐述了各环节的操作方法与参数设置,特别强调了DEM的获取与处理、基线估算、自适应滤波算法选择、解缠算法优化及轨道精炼中GCP点的应用,确保最终获得高精度的地表形变信息。同时提供了常见问题的解决方案与实用技巧,增强了流程的可操作性和可靠性。; 适合人群:具备遥感与GIS基础知识,熟悉ENVI/SARscape软件操作,从事地质灾害监测、地表形变分析等相关领域的科研人员与技术人员;适合研究生及以上学历或具有相关项目经验的专业人员; 使用场景及目标:①掌握DInSAR技术全流程处理方法,用于地表沉降、地震形变、滑坡等地质灾害监测;②提升对InSAR数据处理中关键技术环节(如相位解缠、轨道精炼)的理解与实操能力;③实现高精度形变图的生成与Google Earth可视化表达; 阅读建议:建议结合实际数据边学边练,重点关注各步骤间的逻辑衔接与参数设置依据,遇到DEM下载失败等问题时可参照文中提供的多种替代方案(如手动下载SRTM切片),并对关键结果(如相干性图、解缠图)进行质量检查以确保处理精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值