HashMap源码学习

首先实现map的子类:HashMap、HashTable、TreeMap、LinkedHashMap。

这几个类中HashMap与HashTable的区别:

线程上:HashMap是线程不安全的,而HashTable是安全的。key、value的支持:HashMap的key、balue可以为空,而HashTable是key、value不可以为空的。底层数据结构:HashMap采用数组+链表+红黑树,当链表的长度>=8的时候会考虑是否转成红黑树,而HashTable则没有。初始化容量上:HashTable的初始化容量是11,同时扩容变为原来的2n+1,HashMap的初始化容量是16,同时扩容扩容成原来的2倍。而当给定初始化容量时,HashTable是直接给定初始化容量,而HashMap是将给定的初始化容量变成2的次幂。

jdk7和jdk8之间,jdk8引入了红黑树,同时jdk7中的transform( )方法变成了resize( )方法。什么是红黑树,同时数组什么时候会加入链表,链表和数组满足什么条件时,链表会变成红黑树,什么时候红黑树又会变成链表。同时如果给定初始化容量,给成怎样会才合理。

1.HashMap相关变量

//默认初始化容量2^4 =16,做左移位运算
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//需要变成红黑树的链表阀值 8
static final int TREEIFY_THRESHOLD = 8;
//将红黑树变成链表的阀值 6
static final int UNTREEIFY_THRESHOLD = 6;
//变成红黑树除了满足链表达到8,而且数组需要
//达到64,最小转成红黑树的数组长度64
static final int MIN_TREEIFY_CAPACITY = 64;
//数组,又称为bucket,桶,2的次幂
transient Node<K,V>[] table;
//entrySet:k、v对的集合
transient Set<Map.Entry<K,V>> entrySet;
//map的长度
transient int size;
//修改次数
transient int modCount;
//阀值  threshold = capacity*loadFactor
int threshold;
//加载因子
final float loadFactor;

2.构造函数

//构造函数,对传入的加载因子和初始化容量校验
public HashMap(int initialCapacity, float loadFactor) {
    //如果初始容量<0,则抛异常
    if (initialCapacity < 0)
     throw new IllegalArgumentException(
       "Illegal initial capacity: " + initialCapacity);
    //如果初始容量>最大容量,则将最大容量赋值给初始化容量
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    //加载因子如果小于0或者加载因子为空,则抛异常
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException(
        "Illegal load factor: " + loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

//将传入的容量变成2的n次幂
static final int tableSizeFor(int cap) {
    //向减去1,比如避免16变成32
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    //之后判断如果大于最大值,变成最大值,
    //否者变成n+1,也即变成2的次幂的形式
    return (n < 0) ? 1 : (
   n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

 //构造hashMap,传入初始化容量,默认的加载因子
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

//构造hash,加载因子默认,容量默认
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; 
}

//构造一个HashMap:加载因子为默认加载因子
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    //放入传入的map信息、
    putMapEntries(m, false);
}

final void putMapEntries(Map<? extends K, ? 
                    extends V> m, boolean evict) {
    //拿到map为m的长度
    int s = m.size();
    //如果长度>0,则判断是否为空
    if (s > 0) {
      if (table == null) { // pre-size
        //拿到ft=长度/加载因子+1
        float ft = ((float)s / loadFactor) + 1.0F;
        //如果ft<最大容量,则为ft合理的长度
        int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                   (int)ft : MAXIMUM_CAPACITY);
        //如果t>阀值,则需要进行初始化,变成2的次幂,
        // 类似于扩容,考虑到为变成16的情况
        if (t > threshold)
                threshold = tableSizeFor(t);
         }
          //否者,s>阀值,则会进行扩容操作
          else if (s > threshold)
                resize();
           //拿到key、value的值,执行put操作
           for (Map.Entry<? extends K, ? 
             extends V> e : m.entrySet()) {
              K key = e.getKey();
              V value = e.getValue();
             //进行put操作,添加元素信息
             putVal(hash(key), key, value, false,evict);
            }
        }
    }

3.方法

put方法
public V put(K key, V value) {
  return putVal(hash(key), 
             key, value, false, true);
}

//注意到onlyIfAbsent为false,则可以进行值的替换,
// 如果设置为true,则不可以进行修改value的值
final V putVal(int hash, K key, V value,
              boolean onlyIfAbsent,boolean evict) {
    //定义变量
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //如果table(数组)为空,则进行resize()进行初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //(n-1)&hash,相当于对其进行取模,放入到哪个数组中
    if ((p = tab[i = (n - 1) & hash]) == null)
        //放入到数组中
        tab[i] = newNode(hash, key, value, null);
    //如果不为空
    else {
        Node<K,V> e; K k;
        //如果key存在同时hash值相同,
        //也即数组中已经有元素存在时,
        //则更新value的值
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //如果元素属于树节点,则进行红黑树的判断,执行红黑树操作
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        //否者执行链表操作,元素在链表中
        else {
            //遍历链表
            for (int binCount = 0; ; ++binCount) {
                //遍历到链表尾部
                if ((e = p.next) == null) {
                    //为元素创建信息节点
                    p.next = newNode(hash, key, value, null);
                    //如果binCount个数,也即链表个数>=8时,则进行红黑树操作
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        //执行红黑树操作,首先会去判断数组的
                        // 长度是否>=64,执行完进行断开
                        treeifyBin(tab, hash);
                    break;
                }
                //如果待插入的key在链表中找到,则退出循环
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                //与前面的e = p.next构成循环
                p = e;
            }
        }
        //如果e存在,则将新值替换旧值
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            //判断是否替换成新值
            if (!onlyIfAbsent || oldValue == null)
                //替换旧值为新值
                e.value = value;
            //回调函数,留给LInkedHashMap实现
            afterNodeAccess(e);
            return oldValue;
        }
    }
    //修改次数自增
    ++modCount;
    //size>阀值,进行扩容操作
    if (++size > threshold)
        resize();
    //回调函数,留给LinkedHashMap实现
    afterNodeInsertion(evict);
    return null;
}


/**
 * Tree version of putVal.
 */
//红黑树的put放入方法
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                               int h, K k, V v) {
    Class<?> kc = null;
    boolean searched = false;
    //获取根节点
    TreeNode<K,V> root = (parent != null) ? root() : this;
    //从根节点进行遍历
    for (TreeNode<K,V> p = root;;) {
        int dir, ph; K pk;
        //hash值下小于父节点的hash值,则取左节点
        if ((ph = p.hash) > h)
            dir = -1;
        //如果hash值大于父节点hash值,则取右节点
        else if (ph < h)
            dir = 1;
        //如果hash相等,继续比较键值是否相等,
        //如果相等则说明存在相同的键值,则直接返回当前节点的值
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        //如果hash值相等,但是key不相等
        else if ((kc == null &&
                  //key没有实现Comparable比较接口
                  (kc = comparableClassFor(k)) == null) ||
                 //或者已经实现Comparable比较接口,同时等于0
                 //则不能进行key的顺序判断,因此无法判断,会产生hash碰撞
                 (dir = compareComparables(kc, k, pk)) == 0) {
            //判断是否执行过查找方法
            if (!searched) {
                TreeNode<K,V> q, ch;
                //如果执行过,则分别查找左右树,查看是否有相同的对象,
                //如果找不到,则说明确实没有找到相同对象存在
                searched = true;
                if (((ch = p.left) != null &&
                     (q = ch.find(h, k, kc)) != null) ||
                    ((ch = p.right) != null &&
                     (q = ch.find(h, k, kc)) != null))
                    return q;
            }
            //hash相同,key不相等,并且key没有实现Comparable接口,
            //保持一致的处理规则,以便进行排序,从而进行遍历
            dir = tieBreakOrder(k, pk);
        }
        //备份当前节点
        TreeNode<K,V> xp = p;
        //如果遍历完之后还是没有找到相同的key的节点,则进行新的插入操作
        if ((p = (dir <= 0) ? p.left : p.right) == null) {
            Node<K,V> xpn = xp.next;
            TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
            //备份当前节点的下一个节点;给LinkedHashMap预留的
            if (dir <= 0)
                xp.left = x;
            else
                xp.right = x;
            //将当前节点的next节点指向新节点
            xp.next = x;
            //设置新的父节点和当前节点为当前节点
            x.parent = x.prev = xp;
            //如果当前节点还是后继节点,
            // 则将新节点作为当前节点的前驱节点
            if (xpn != null)
                ((TreeNode<K,V>)xpn).prev = x;
            //实现红黑树重排实现重平衡
            moveRootToFront(tab, balanceInsertion(root, x));
            return null;
        }
    }
}


/**
 * Replaces all linked nodes in bin at index for given hash unless
 * table is too small, in which case resizes instead.
 */
//进行数组长度64的判断,如果成立,则将链表转换为红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    //如果数组长度<64,则进行扩容操作
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    //否者进行红黑树操作
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
            //创建红黑树节点
            TreeNode<K,V> p = replacementTreeNode(e, null);
            //将第一个节点作为头结点,并取出原链表的元素,重排成双向链表
            if (tl == null)
                hd = p;
            else {
                //否者进行前驱和后继操作
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        //如果根节点不为空,则进行红黑树的重平衡操作
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}


/**
 * Forms tree of the nodes linked from this node.
 * @return root of tree
 */
//进行重平衡操作
final void treeify(Node<K,V>[] tab) {
    TreeNode<K,V> root = null;
    for (TreeNode<K,V> x = this, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        if (root == null) {
            x.parent = null;
            x.red = false;
            root = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph;
                K pk = p.key;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0)
                    dir = tieBreakOrder(k, pk);

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    root = balanceInsertion(root, x);
                    break;
                }
            }
        }
    }
    moveRootToFront(tab, root);
}

/**
         * Ensures that the given root is the first node of its bin.
         */
//将root节点放到哈希表的首元素
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
    int n;
    if (root != null && tab != null && (n = tab.length) > 0) {
        int index = (n - 1) & root.hash;
        TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
        if (root != first) {
            Node<K,V> rn;
            tab[index] = root;
            TreeNode<K,V> rp = root.prev;
            if ((rn = root.next) != null)
                ((TreeNode<K,V>)rn).prev = rp;
            if (rp != null)
                rp.next = rn;
            if (first != null)
                first.prev = root;
            root.next = first;
            root.prev = null;
        }
        assert checkInvariants(root);
    }
}

//树节点查找
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    TreeNode<K,V> p = this;
    //进行do-while循环找到相要的元素
    do {
        int ph, dir; K pk;
        TreeNode<K,V> pl = p.left, pr = p.right, q;
        //hash值小于当前节点,则在左节点进行比较,否者在右节点比较
        if ((ph = p.hash) > h)
            p = pl;
        else if (ph < h)
            p = pr;
        //否者是当前的节点,直接返回
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        //左节点为空,则遍历右节点
        else if (pl == null)
            p = pr;
        //右节点为空,则遍历左节点
        else if (pr == null)
            p = pl;
        //如果实现了Comparable接口,则更加compareTo比较出来的大小获取顺序
        else if ((kc != null ||
                  (kc = comparableClassFor(k)) != null) &&
                 (dir = compareComparables(kc, k, pk)) != 0)
            p = (dir < 0) ? pl : pr;
        //如果没有则采用find()放到进行返回
        else if ((q = pr.find(h, k, kc)) != null)
            return q;
        else
            p = pl;
    } while (p != null);
    return null;
}
扩容操作
//进行扩容操作
final Node<K,V>[] resize() {
    //老的数组
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    //首先老的容量是否大于0,如果大于0,
    //则进行最大容量判断,如果最大容量判断不为空,
    // 则将阀值设置为最大容量,返回老容量
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //否者对新容量进行做位运算左移一位,扩容2倍
        //如果小于最大容量,同时老容量大于默认初始化容量,
        //则阀值扩容成原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    //如果老阀值大于0,则新容量等于老阀值
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {//否者没有进行初始容量,则 采用默认容量16,新的阀值为16*0.75
        // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //如果新的阀值为0,则采用默认的
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    //采用新的阀值
    threshold = newThr;
    //创建一个新的数组,同时 newCap = 0,方便扩容使用
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    //数组等于新的tab
    table = newTab;
    //原来的hash表不为空时,将原来的元素复制到新的hash表中
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                //将原来的元素置空
                oldTab[j] = null;
                //如果当前元素的后继为空,将e放入到取模的新数组中
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                //如果为树节点,则进行红黑树的扩容操作
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                //保持顺序
                else { // preserve order
                    //lohead指low的低位的头结点,loTail表示低位的尾节点
                    Node<K,V> loHead = null, loTail = null;
                    //hihead指low的高位的头结点,hiTail表示高位的尾节点
                    Node<K,V> hiHead = null, hiTail = null;
                    //下一个节点
                    Node<K,V> next;
                    //取模只可能出现0或者1的情况
                    do {
                        //e元素的前驱节点
                        next = e.next;
                        //如hash值对老容量取余为0,则放入到低位的链表中
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        //否者则说明hash值对老容量取模不为0,
                        //也就是为1的情况,放在高位的链表中
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        //遍历完成分化两个链表
                        //低位链表在新的哈希表中的位置与旧哈希表一样
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    //高位链表在新哈希表中的位置为原来的位置+oldcap
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}


//将树中的节点拆分为较高和较低的树,
//如果现在太小,则取消树化。仅从调整
//大小调用。也即进行树变链表和链表转成树的操作
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    //获取当前元素
    TreeNode<K,V> b = this;
    // Relink into lo and hi lists, preserving order
    //低位、高位的头结点和尾节点
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    //从根节点开始遍历红黑树,统计出需要放到低位和需要移动到高位的元素个数
    //进行红黑树操作或者红黑树转链表操作
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }
    //如果低位头结点不为空,则进行低位操作
    if (loHead != null) {
        //小于红黑树阀值时,则不满足红黑树操作,转链表
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        //否者进行红黑树操作,将低位头结点放入到hash表中
        else {
            tab[index] = loHead;
            //如果高位头结点不为空,则进行重平衡操作
            if (hiHead != null) // (else is already treeified)
                loHead.treeify(tab);
        }
    }
    //如果高位头结点不为空,则进行高位操作,
    //如果不满足红黑树阀值,则进行转链表操作
    //否者进行红黑树重平衡操作
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}


/**
 * Returns a list of non-TreeNodes replacing those linked from
 * this node.
 */
//将树转成链表
final Node<K,V> untreeify(HashMap<K,V> map) {
    Node<K,V> hd = null, tl = null;
    for (Node<K,V> q = this; q != null; q = q.next) {
        Node<K,V> p = map.replacementNode(q, null);
        if (tl == null)
            hd = p;
        else
            tl.next = p;
        tl = p;
    }
    return hd;
}
remove操作
//进行删除操作
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

//删除节点信息
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    //如果hash表、表长度不为空,同时hash取模不为空,则进行移除操作
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        //找到该元素进行存放
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        //如果当前节点的下一个节点不为空,则有可能为树节点,或者链表
        else if ((e = p.next) != null) {
            //树节点,拿到该元素信息
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            //链表,拿到该元素
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        //拿到之后,进行删除操作
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}


//树节点查找 
final TreeNode<K,V> getTreeNode(int h, Object k) {
    return ((parent != null) ? root() : this).find(h, k, null);
}
//树节点查找
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    TreeNode<K,V> p = this;
    //进行do-while循环找到相要的元素
    do {
        int ph, dir; K pk;
        TreeNode<K,V> pl = p.left, pr = p.right, q;
        //hash值小于当前节点,则在左节点进行比较,否者在右节点比较
        if ((ph = p.hash) > h)
            p = pl;
        else if (ph < h)
            p = pr;
        //否者是当前的节点,直接返回
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        //左节点为空,则遍历右节点
        else if (pl == null)
            p = pr;
        //右节点为空,则遍历左节点
        else if (pr == null)
            p = pl;
        //如果实现了Comparable接口,则更加compareTo比较出来的大小获取顺序
        else if ((kc != null ||
                  (kc = comparableClassFor(k)) != null) &&
                 (dir = compareComparables(kc, k, pk)) != 0)
            p = (dir < 0) ? pl : pr;
        //如果没有则采用find()放到进行返回
        else if ((q = pr.find(h, k, kc)) != null)
            return q;
        else
            p = pl;
    } while (p != null);
    return null;
}

//进行红黑树的删除操作
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                          boolean movable) {
    int n;
    //进行判空操作,如果为空,则直接返回
    if (tab == null || (n = tab.length) == 0)
        return;
    //进行取余操作
    int index = (n - 1) & hash;
    TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
    //下一个元素 pred = prev为前驱
    TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
    //前驱节点为空,则说明为头结点,执行将位置指向后元素
    if (pred == null)
        tab[index] = first = succ;
    //否者,则说明头结点不为空,则进行前驱节点的下一个节点指向后节点
    else
        pred.next = succ;
    //如果后节点不为空,则将后节点的前一个节点指向前节点
    if (succ != null)
        succ.prev = pred;
    //如果first为空,则说明没有元素,直接返回
    if (first == null)
        return;
    //root还有父节点,则说明不是根,拿到根
    if (root.parent != null)
        root = root.root();
    if (root == null || root.right == null ||
        (rl = root.left) == null || rl.left == null) {
        //红黑树转链表操作
        tab[index] = first.untreeify(map);  // too small
        return;
    }
    //p为删除节点,pl为左节点,pr为有节点,replacement为要移动的子节点
    TreeNode<K,V> p = this, pl = left, pr = right, replacement;
    //左右节点 不为空
    if (pl != null && pr != null) {
        //s为右节点
        TreeNode<K,V> s = pr, sl;
        //s的右节点的左节点不为空
        while ((sl = s.left) != null) // find successor
            s = sl;
        boolean c = s.red; s.red = p.red; p.red = c; // swap colors
        //交换删除节点和右节点的左节点的颜色,进行变色操作
        TreeNode<K,V> sr = s.right;
        TreeNode<K,V> pp = p.parent;
        if (s == pr) { // p was s's direct parent
            p.parent = s;
            s.right = p;
        }
        else {
            TreeNode<K,V> sp = s.parent;
            if ((p.parent = sp) != null) {
                if (s == sp.left)
                    sp.left = p;
                else
                    sp.right = p;
            }
            if ((s.right = pr) != null)
                pr.parent = s;
        }
        p.left = null;
        if ((p.right = sr) != null)
            sr.parent = p;
        if ((s.left = pl) != null)
            pl.parent = s;
        if ((s.parent = pp) == null)
            root = s;
        else if (p == pp.left)
            pp.left = s;
        else
            pp.right = s;
        if (sr != null)
            replacement = sr;
        else
            replacement = p;
    }
    //pl不为空,则删除节点为左节点
    else if (pl != null)
        replacement = pl;
    //pr不为空,则删除节点为右节点
    else if (pr != null)
        replacement = pr;
    //删除元素为叶子节点
    else
        replacement = p;
    //如果删除节点后进行红黑树处理,使用变色和旋转
    if (replacement != p) {
        TreeNode<K,V> pp = replacement.parent = p.parent;
        if (pp == null)
            root = replacement;
        else if (p == pp.left)
            pp.left = replacement;
        else
            pp.right = replacement;
        p.left = p.right = p.parent = null;
    }

    TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
    //删除节点为叶子节点,则删除与之关联的节点
    if (replacement == p) {  // detach
        TreeNode<K,V> pp = p.parent;
        p.parent = null;
        if (pp != null) {
            if (p == pp.left)
                pp.left = null;
            else if (p == pp.right)
                pp.right = null;
        }
    }
    //根据标识决定是否将根节点转移hash表首元素
    if (movable)
        moveRootToFront(tab, r);
}


get操作
//通过key获取value的信息
public V get(Object key) {
    //节点信息,返回节点的值
    Node<K,V> e;
    //获取value值
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

//通过hash值和key,拿到节点信息,进一步拿到value值
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    //哈希表不为空,同时长度大于0,hash取模不为空时
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        //进行判断首节点的hash、key是否与之相同
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        //如果首节点有后继节点,则说明有链表或者红黑树,此时需要进行判盘
        //如果为树节点,则进行树节点信息的获取,否者为链表,遍历链表获取元素
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

final TreeNode<K,V> getTreeNode(int h, Object k) {
    return ((parent != null) ? root() : this).find(h, k, null);
}

//树节点查找
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    TreeNode<K,V> p = this;
    //进行do-while循环找到相要的元素
    do {
        int ph, dir; K pk;
        TreeNode<K,V> pl = p.left, pr = p.right, q;
        //hash值小于当前节点,则在左节点进行比较,否者在右节点比较
        if ((ph = p.hash) > h)
            p = pl;
        else if (ph < h)
            p = pr;
        //否者是当前的节点,直接返回
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        //左节点为空,则遍历右节点
        else if (pl == null)
            p = pr;
        //右节点为空,则遍历左节点
        else if (pr == null)
            p = pl;
        //如果实现了Comparable接口,则更加compareTo比较出来的大小获取顺序
        else if ((kc != null ||
                  (kc = comparableClassFor(k)) != null) &&
                 (dir = compareComparables(kc, k, pk)) != 0)
            p = (dir < 0) ? pl : pr;
        //如果没有则采用find()放到进行返回
        else if ((q = pr.find(h, k, kc)) != null)
            return q;
        else
            p = pl;
    } while (p != null);
    return null;
}

 //比较器
 static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

   //比较器
   @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

从里面可以收获到的一些结论:

HashMap的源码较多,且综合了数组、链表、红黑树的操作,因此不管是get还是remove还是get都需要考虑到三张数据结构的操作。同时红黑树是一种平衡二叉树,节点是黑色或者红色的,根节点为黑色的,每个红色节点的两个叶子节点都是黑色的,从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。同时当key相同时,会出现冲突,此时就需要解决hash冲突,此时就将其放入到链表中。而当链表的长度>=8时,数组长度>=64时,则变成红黑树。给定初始化容量时,给定元素个数/加载因子为最佳初始化容量,可以在源码找到这个代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值