2019年3月29日,第十二期北大软微-八分量协同实验室学术沙龙活动如期展开。本次技术沙龙讨论的主题是安全椭圆曲线加密算法的选取。北京大学的沈晴霓教授、方跃坚副教授、Trias胡志琳以及软微学院众位博士生、硕士生参与了此次沙龙,并由博士生冯新宇做出分享。
上期的沙龙介绍了椭圆曲线,并对椭圆曲线数字签名算法(ECDSA)和椭圆曲线密码学(ECC)做出了简述,并分享了一下最受外界关注的领域,如门限签名技术等。在此基础上,本期的沙龙对椭圆曲线加密技术做出进一步挖掘。
学术界已经提出了很多不同的ECC选择标准,每一个都试图确保椭圆曲线离散对数问题(ECDLP)是困难的。而ECDLP是在给定用户公钥的情况下查找ECC用户密钥的问题。
但遗憾的是,虽然标准曲线在安全实现理论上可行,但实践却表明,ECDLP并不足以完全保障ECC的安全性。人们发现,很多攻击可以绕过困难问题,在不解决ECDLP的情况下破坏了现实中在使用的ECC。
因此,如何选择更优质的曲线来保障安全,并能够比较简单的高效率实现,就成了安全曲线相关课题摆在明面上的难题。
为了达到上述目的,许多解决方案通过各国的学术论文被提了出来。但随后很多的研究表明,许多所谓能提高效率的决策都不靠谱,有的并没有作用,还有的虽然有用,但是会损害安全性。
通过研究发现,基于椭圆曲线的密码系统主要有7个系统参数T=(q,FR,a,b,G,n,h),其中q表示所选择的有限域;FR是有限域上的元素的表示方法;a和b表示椭圆曲线的参数;G是在曲线上选择的基点;n表示该基点的阶,是一个足够大的素数;h是n的余因子,是一个小整数。
在所有椭圆曲线公