leetcode -- 236. Lowest Common Ancestor of a Binary Tree(LCA,最近公共祖先节点)

题目描述

题目难度:Medium

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
在这里插入图片描述

  • Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.

  • Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

Note:

All of the nodes’ values will be unique.
p and q are different and both values will exist in the binary tree.

AC代码1

最简单粗暴的解法:从下往上依次遍历树中每个节点,第一次出现子树(包括节点本身)既有p又有q的结点为LCA所求结点。
时间复杂度:O(n * n)

class Solution {
    private TreeNode resNode = null;
public TreeNode findCommonNode(TreeNode root, TreeNode p, TreeNode q){
	if(root == null) return null;
	if(p == null && q == null)
		return null;
       if(root.left  !=  null) findCommonNode(root.left, p, q);
       if(root.right  !=  null) findCommonNode(root.right, p, q);
       if(hasNode(root, p) && hasNode(root, q)) 
               if(resNode == null) resNode = root;
       return resNode;
}

private boolean hasNode(TreeNode root, TreeNode node){
	if(root == null) return false;
	if(root == node) return true;;
	if(root.left == node || root.right == node) return true;
	return hasNode(root.left, node) || hasNode(root.right, node);
}

    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        return findCommonNode(root, p, q);
    }
}

AC代码2

leetcode大神的解法,以递归的方式解决LCA问题。
时间复杂度:O(n);
空间复杂度:O(n)。主要是递归栈的深度。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root == null || root == p || root == q) {
            return root;
        }
        
        TreeNode left = lowestCommonAncestor(root.left, p , q);
        TreeNode right = lowestCommonAncestor(root.right, p , q);
        return left == null ? right: right == null ? left: root;
}
}

AC代码3

建立两队列,一个队列保存从根节点到p的路径,另一个队列保存从根节点到q的路径。两个路径中第一个不相同的节点的前一个节点即为LCA所求。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root == null || root == p || root == q) {
            return root;
        }
        LinkedList<TreeNode> q1 = new LinkedList<>();
        LinkedList<TreeNode> q2 = new LinkedList<>();
        getTrace(root, q1, p);
        getTrace(root, q2, q);
        return LCA(q1, q2);
}
    
    private boolean getTrace(TreeNode root, LinkedList<TreeNode> queue, TreeNode node){
        if(root == null) return false;
        if(root == node){
            queue.offer(root);
            return true;
        }
        queue.offer(root);
        if(getTrace(root.left, queue, node) || getTrace(root.right, queue, node)) return true;
        queue.pollLast();
        return false;
    }
    
    private TreeNode LCA(Queue<TreeNode> q1, Queue<TreeNode> q2){
        TreeNode node = null;
        while(true){
            TreeNode n1 = q1.poll();
            TreeNode n2 = q2.poll();
            if(n1 == n2) node = n1;
            else break;
        }
        return node;
    }
}

AC代码4

离线Tarjan算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值