Hiho 数论一·Miller-Rabin质数测试,大素数判断

这篇博客介绍了Miller-Rabin质数测试,一种基于费马小定理和二次探测定理的算法,用于判断大素数。通过随机选取数a计算a^(n-1) mod n,结合二次探测检查n-1的2的幂次因子,以提高测试准确性。多次测试可以降低误判率,尤其当选取多个不同的a值时。该方法虽概率性,但在实践中效果良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目1 : 数论一·Miller-Rabin质数测试

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB

描述

小Hi和小Ho最近突然对密码学产生了兴趣,其中有个叫RSA的公钥密码算法。RSA算法的计算过程中,需要找一些很大的质数。

小Ho:要如何来找出足够大的质数呢?

小Hi:我倒是有一个想法,我们可以先随机一个特别大的初始奇数,然后检查它是不是质数,如果不是就找比它大2的数,一直重复,直到找到一个质数为止。

小Ho:这样好像可行,那我就这么办吧。

过了一会儿,小Ho拿来了一张写满数字的纸条。

小Ho:我用程序随机生成了一些初始数字,但是要求解它们是不是质数太花时间了。

小Hi:你是怎么做的啊?

说着小Hi接过了小Ho的纸条。

小Ho:比如说我要检测数字n是不是质数吧,我就从2开始枚举,一直到sqrt(n),看能否被n整除。

小Hi:那就对了。你看纸条上很多数字都是在15、16位左右,就算开方之后,也有7、8位的数字。对于这样大一个数字的循环,显然会很花费时间。

小Ho:那有什么更快速的方法么?

小Hi:当然有了,有一种叫做Miller-Rabin质数测试的算法,可以很快的判定一个大数是否是质数。

提示:Miller-Rabin质数测试  

输入

第1行:1个正整数t,表示数字的个数,10≤t≤50

第2..t+1行:每行1个正整数,第i+1行表示正整数a[i],2≤a[i]≤10^18

输出

第1..t行:每行1个字符串,若a[i]为质数,第i行输出"Yes",否则输出"No"

样例输入
3
3
7
9

样例输出

Yes
Yes
No

提示:Miller-Rabin质数测试

小Hi:这种质数算法是基于费马小定理的一个扩展,首先我们要知道什么是费马小定理
费马小定理:对于质数p和任意整数a,有a^p ≡ a(mod p)(同余)。反之,若满足a^p ≡ a(mod p),p也有很大概率为质数。
将两边同时约去一个a,则有a^(p-1) ≡ 1(mod p)
也即是说:假设我们要测试n是否为质数。我们可以随机选取一个数a,然后计算a^(n-1) mod n,如果结果不为1,我们可以100%断定n不是质数。
否则我们再随机选取一个新的数a进行测试。如此反复多次,如果每次结果都是1,我们就假定n是质数。
该测试被称为Fermat测试。需要注意的是:Fermat测试不一定是准确的,有可能出现把合数误判为质数的情况。
Miller和Rabin在Fermat测试上,建立了Miller-Rabin质数测试算法。

与Fermat测试相比,增加了一个二次探测定理
如果p是奇素数,则 x^2 ≡ 1(mod p)的解为 x ≡ 1 或 x ≡ p - 1(mod p)
如果a^(n-1) ≡ 1 (mod n)成立,Miller-Rabin算法不是立即找另一个a进行测试,而是看n-1是不是偶数。如果n-1是偶数,另u=(n-1)/2,并检查是否满足二次探测定理即a^u ≡ 1 或 a^u ≡ n - 1(mod n)。
举个Matrix67 Blog上的例子,假设n=341,我们选取的a=2。则第一次测试时,2^340 mod 341=1。由于340是偶数,因此我们检查2^170,得到2^170 mod 341

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值