椭圆曲线加密算法

本文介绍了椭圆曲线加密算法(ECC)及其在网络安全中的应用,特别是数字签名ECDSA的工作原理。ECC因其安全性高、效率优于传统RSA而被广泛采用,如比特币中的公私钥生成和签名。文章详细讲解了椭圆曲线的数学基础,包括加法运算、离散对数问题以及有限域上的椭圆曲线,最后阐述了如何生成公钥和私钥,并讨论了ECDSA的生成和验证数字签名的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

椭圆曲线密码学(Elliptic curve cryptography),简称ECC,是一种建立公开密钥加密的算法,也就是非对称加密。类似的还有RSA,ElGamal算法等。ECC被公认为在给定密钥长度下最安全的加密算法。比特币中的公私钥生成以及签名算法ECDSA都是基于ECC的。下面简单介绍ECC以及ECDSA的原理。
在这里插入图片描述

从公钥加密说起

公钥加密,也称非对称加密。可以说它现在是现代网络安全或者网络信任链的基础。公钥加密最大的特征就是通信双方各有一对公私钥,这一对公私钥有着千丝万缕的数学关系。每个人保存自己的私钥,公开自己的公钥。这样做的好处是不怕通信线路被窃听,因为攻击者拿到公钥是无法解出密文的。公私钥的基本使用场景主要有两种:

假设通信双方叫Alice(公钥A、私钥a)和Bob(公钥B、私钥b)。

  • 公钥加密,私钥解密
  1. Alice写了一封信,她不想让别人知道。于是它用Bob的公钥B对信的明文做了加密,密文为m。之后发送给了Bob。
  2. Bob收到密文m,用自己的私钥b对密文解密,正确的读出了信的内容。

整个过程中,即使窃听者拿到密文m、两个人的公钥A、B都没有什么用,无法解密出任何东西。事实上,只有拥有私钥b的人才能解密出这份信息。换个角度来说,每个人都可以拥有Bob的公钥B,也就是说,每个人都可以创造一份只有Bob可以使用或者说只对Bob来说有效的信息。

  • 私钥加密,公钥解密
  1. Alice写了一份公开声明文件,她用自己的私钥a对文件加了密,生成加密文件m,公布在自己的网站中。
  2. Bob下载了这份声明文件,并用Alice的公钥A进行解密,正确的读出文件内容。

这个过程听起来有点奇怪,Alice既然公布的是声明文件,是想让别人阅读的,而且每个人都可以拿到Alice的公钥A,那么为什么还要加密呢?确实,每个人都可以对文件解密,可是这里的目的主要不是解密,而是对这份文件的来源验证,证明它肯定是由Alice发出的声明。即使文件被恶意篡改,那么此时再拿公钥A解密,就是无效的,由此可证明信息被改动过了,并不是Alice的原来文件。用这种方式使用公私钥可以证明信息的来源并且有不可否定的特性。(即Alice不能否认此信息不是由她发出的,因为只有私钥a可以产生加密文件m)

以上是使用公钥加密算法的基础场景,但事实上用上述方法进行通信还远远不够,例如需要提高加密速度,需要先对文件进行hash;再如不能抵御中间人攻击,(即获取的公钥不一定是正确的)需要引入证书,不过这些不在本文讨论范围之内。下面我们来看ECC是如何产生密钥对的。

椭圆曲线

这一节让我们来了解一些数学知识。

一般来说,椭圆曲线可以用下列方程式表示,a,b,c,d为系数(a≠0,有重根)
在这里插入图片描述
例如,当a=1,b=0,c=-2,d=4时,所得到的椭圆曲线为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值