原理介绍:原文点击
Doris通过创建外部表方式将Doris的分布式查询规划能力和ES(Elasticsearch)的全文检索能力相结合,提供更完善的OLAP分析场景解决方案,支持:
-
ES中的多index分布式Join查询
-
Doris和ES中的表联合查询,更复杂的全文检索过滤

创建ES外表后,FE会请求建表指定的主机,获取所有节点的HTTP端口信息以及index的shard分布信息等,如果请求失败会顺序遍历host列表直至成功或完全失败。
执行查询时,会根据FE得到的一些节点信息和index的元数据信息,生成查询计划并发给对应的BE节点,BE节点会根据就近原则即优先请求本地部署的ES节点,BE通过HTTP Scroll方式流式的从ES index的每个分片中并发的获取数据
计算完结果后,返回给client端。
ES节点类型分为主节点、数据节点、协调节点,FE通过主节点获取ES信息,BE直接拉取数据节点获取数据。
实验过程
实验环境:doris版本0.14.0,elasticsearch版本7.11.1
doris环境搭建及启动这里就不在叙述了,elasticsearch参考ES环境搭建及后续文章。
一、单节点查询:
1、创建doris外部表
CREATE EXTERNAL TABLE `es_table` (`id` bigint(20) COMMENT "",`k1` bigint(20) COMMENT "",`k2` datetime COMMENT "",`k3` varchar(20) COMMENT "",`k4` varchar(100) COMMENT "",`k5` float COMMENT "") ENGINE=ELASTICSEARCHPARTITION BY RANGE(`id`)()PROPERTIES ("host" = "http://192.168.244.129:9200","index" = "test”);
2、ES初始化
1、创建test索引
{"mappings": {"properties": {"k1": {"type": "long","index": "true"},"k3": {"type": "text","analyzer": "ik_max_word","search_analyzer": "ik_max_word"},"k4": {"type": "text","analyzer": "ik_max_word","search_analyzer": "ik_max_word"},"k5": {"type": "float"},"k2": {"type": "date","format": "yyyy-MM-dd"}}}}

2、添加数据
{"k1": 100,"k2": "2020-01-01","k3": "Trying","k4": "Trying out Elasticsearch","k5": 10}
数据添加成功后,在mysql客户端连接doris查询ES数据,看到如下结果代表doris查询ES成功。

3、批量添加数据
POST /_bulk
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Trying out Elasticsearch", "k4": "Trying out Elasticsearch", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Trying out Doris", "k4": "Trying out Doris", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Doris On ES", "k4": "Doris On ES", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Doris", "k4": "Doris", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "ES", "k4": "ES", "k5": 10.0}
执行模糊匹配查询:

二、JOIN查询:
1、创建外部表

2、ES创建索引test2
{"mappings": {"properties": {"k1": {"type": "long","index": "true"},"k3": {"type": "text","analyzer": "ik_max_word","search_analyzer": "ik_max_word"},"k4": {"type": "text","analyzer": "ik_max_word","search_analyzer": "ik_max_word"},"k5": {"type": "float"},"k2": {"type": "date","format": "yyyy-MM-dd"}}}}
3、ES添加数据
POST /_bulk{"index":{"_index":"test2"}}{ "k1" : 200, "k2": "2020-02-01", "k3": "Doris e ", "k4": "ES", "k5": 20.0}
4、执行JOIN查询

5、JOIN模糊查询
select * from test ,test2 where test.k1=test2.k1 and esquery(test.k3, '{"match": {"k3": "ES"}}');

Doris ON ES 今天就介绍到这里了,觉得有用关注:蓝天Java大数据

本文介绍了Doris如何通过外部表与Elasticsearch无缝结合,实现高效多index Join查询和全文检索,展示了从创建表、数据操作到复杂查询的完整流程,适合大数据分析爱好者。
505

被折叠的 条评论
为什么被折叠?



