机器学习 使用更复杂的注意力机制、更大的模型容量

下面我们将基于之前的神经机器翻译代码,使用更复杂的多头注意力机制(Multi - Head Attention)并增大模型容量来实现一个更强大的机器翻译模型。这里我们使用 PyTorch 框架,以英德翻译为例,数据集依然采用 torchtext 中的 Multi30k 数据集。

1. 安装必要的库

pip install torch torchtext spacy
python -m spacy download en_core_web_sm
python -m spacy download de_core_news_sm

2. 代码实现

import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator
import spacy
import random
import math
import time

# 设置随机种子以保证结果可复现
SEED = 1234
random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True

# 加载英语和德语的分词器
spacy_de = spacy.load('de_core_news_sm')
spacy_en = spacy.load('en_core_web_sm')

# 定义分词函数
def tokenize_de(text):
    return [tok.text for tok in spacy_de.tokenizer(text)]

def tokenize_en(text):
    return [tok.text for tok in spacy_en.tokenizer(text)]

# 定义字段
SRC = Field(tokenize=tokenize_de,
            init_token='<sos>',
            eos_token='<eos>',
            lower=True)

TRG = Field(tokenize=tokenize_en,
            init_token='<sos>',
            eos_token='<eos>',
            lower=True)

# 加载数据集
train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'),
                                                    fields=(SRC, TRG))

# 构建词汇表
SRC.build_vocab(train_data, min_freq=2)
TRG.build_vocab(train_data, min_freq=2)

# 定义设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 创建迭代器
BATCH_SIZE = 128
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
    (train_data, valid_data, test_data),
    batch_size=BATCH_SIZE,
    device=device)

# 定义多头注意力机制
class MultiHeadAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(MultiHeadAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        assert (
            self.head_dim * heads == embed_size
        ), "Embedding size needs to be divisible by heads"

        self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        # Split the embedding into self.heads different pieces
        values = values.reshape(N, value_len, self.heads, self.head_dim)
        keys = keys.reshape(N, key_len, self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值