[USACO]Section 1.3 Barn Repair

本文讨论了在面对复杂问题时,如何选择直觉式解决方案与优化策略之间的平衡。通过案例分享,强调了简化问题、使用草图辅助思考的重要性,并推荐了一些实用技巧如Brute Force first和KISS原则。

仍旧是采取最直觉的方式解题,故思路搞得很复杂,数据结构也搞了一堆。

官网上的答案思路很简洁,绕了一个小弯,确实简单不少

不过在考试或比赛的时候也说不准是多考虑一些时间以降低问题复杂度,还是直接按照最直觉的解决方案(当然也应该是可行的)。一句话来总结就是平衡。当直觉式的方案复杂度太高时,寻找低复杂度方案,但不要苛求。USACO的《Crafting Winning Solutions 》那一小节很有用,提到的一些tricks&Tips很实用:Brute Force first,KISS等等。再有将思路在草图上画下来确实是一个很好的习惯,我们专注的应该是“问题本身”,而不是记住自己的思路。

USACO1.3中最长回文Calf Flac问题要求在给定的文本中找出最长的回文子串,如果有多个回文长度都等于最大值,输出最前面出现的那一个。以下为该问题的解决方案: ### 解题思路 1. **预处理文本**:去除文本中非字母字符,同时记录每个字母在原文本中的位置,方便后续输出原始回文子串。 2. **遍历文本**:以每个字母为中心,向两边扩展来寻找回文子串。回文子串分为奇数长度和偶数长度两种情况,需要分别处理。 3. **记录最长回文子串**:在遍历过程中,记录最长回文子串的长度和起始位置,同时记录该回文子串在原文本中的起始和结束位置。 4. **输出结果**:输出最长回文子串的长度以及原文本中的最长回文子串。 ### 代码实现 ```python # 读取输入 input_text = input() # 预处理文本,记录字母及其在原文本中的位置 letters = [] positions = [] for i, char in enumerate(input_text): if char.isalpha(): letters.append(char.upper()) positions.append(i) n = len(letters) max_length = 0 start = 0 end = 0 # 遍历每个字母,以其为中心扩展寻找回文子串 for i in range(n): # 奇数长度回文串 left, right = i, i while left >= 0 and right < n and letters[left] == letters[right]: length = right - left + 1 if length > max_length: max_length = length start = positions[left] end = positions[right] left -= 1 right += 1 # 偶数长度回文串 left, right = i, i + 1 while left >= 0 and right < n and letters[left] == letters[right]: length = right - left + 1 if length > max_length: max_length = length start = positions[left] end = positions[right] left -= 1 right += 1 # 输出结果 print(max_length) print(input_text[start:end + 1]) ``` ### 复杂度分析 - **时间复杂度**:$O(n^2)$,其中 $n$ 是文本中字母的数量。因为对于每个字母,都需要向两边扩展来寻找回文子串。 - **空间复杂度**:$O(n)$,主要用于存储字母和其在原文本中的位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值