Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
Source
My original code is lengthy:
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int N,Q,cows[50001],A,B;
int cal(int a,int b){
int max=cows[a],min=cows[a];
for(int i=a+1;i<=b;i++){
if(max<cows[i])
max=cows[i];
if(min>cows[i])
min=cows[i];
}
return max-min;
}
struct node{
int l,r,min,max;
}tree[50001*3];
struct maxmin{
int max,min;
};
void build(int k,int l,int r){
tree[k].l=l;
tree[k].r=r;
if( l==r ){
tree[k].max=max(cows[l],cows[r]);
tree[k].min=min(cows[l],cows[r]);
}
else{
build(2*k+1,l,(l+r)/2);
build(2*k+2,(l+r)/2+1,r);
tree[k].max=max(tree[2*k+1].max,tree[2*k+2].max);
tree[k].min=min(tree[2*k+1].min,tree[2*k+2].min);
}
}
int query(int k,int l,int r,int *Max,int *Min){
int max1,max2,min1,min2;
if(tree[k].l==l && tree[k].r==r){
(*Max)=tree[k].max;
(*Min)=tree[k].min;
return (*Max)-(*Min);
}
int mid=(tree[k].l+tree[k].r)/2;
if( r<=mid ){
query(2*k+1,l,r,Max,Min);
return (*Max)-(*Min);
}
else if( l>=mid+1 ){
query(2*k+2,l,r,Max,Min);
return (*Max)-(*Min);
}
else{
query(2*k+1,l,mid,Max,Min);
max1=(*Max);
min1=(*Min);
query(2*k+2,mid+1,r,Max,Min);
max2=(*Max);
min2=(*Min);
(*Max)=max(max1,max2);
(*Min)=min(min1,min2);
return (*Max)-(*Min);
}
}
int main(){
int i,j,Max,Min;
scanf("%d%d",&N,&Q);
for(i=1;i<=N;i++)
scanf("%d",&cows[i]);
build(0,1,N);
for(i=0;i<Q;i++){
scanf("%d%d",&A,&B);
int res=query( 0,A,B,&Max,&Min );
printf("%d\n",res);
}
//system("pause");
return 0;
}The concise code :
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int N,Q,cows[50001],A,B;
struct node{
int l, r, min, max;
}tree[50001 * 3];
int maxx, minx;
void build(int k, int l, int r){
tree[k].l=l;
tree[k].r=r;
if( l==r )
tree[k].max=tree[k].min=cows[l];
else{
build(2 * k + 1, l, (l + r) / 2);
build(2 * k + 2, (l + r) / 2 + 1, r);
tree[k].max = max(tree[2*k+1].max, tree[2*k+2].max);
tree[k].min = min(tree[2*k+1].min, tree[2*k+2].min);
}
}
int query(int k, int l, int r){
int max1, max2, min1, min2;
if(tree[k].l == l && tree[k].r == r){
maxx = tree[k].max;
minx = tree[k].min;
return (maxx - minx);
}
int mid = (tree[k].l + tree[k].r) / 2;
if(r <= mid){
query(2 * k + 1, l, r);
return (maxx - minx);
}
else if(l >= mid + 1){
query(2 * k + 2, l, r);
return (maxx - minx);
}
else{
query(2 * k + 1, l, mid);
max1 = maxx;
min1 = minx;
query(2 * k + 2, mid + 1, r);
maxx = max(max1, maxx);
minx = min(min1, minx);
return maxx - minx;
}
}
int main(){
int i,j,Max,Min;
scanf("%d%d",&N,&Q);
for(i=1;i<=N;i++)
scanf("%d",&cows[i]);
build(0,1,N);
for(i=0;i<Q;i++){
scanf("%d%d",&A,&B);
int res=query(0,A,B);
printf("%d\n",res);
}
//system("pause");
return 0;
}Another way:
Use the RMQ to get the maximum and minimum of d[i][j]:
//8200K 1610MS
#include
#include
const int M = 50005;
const int N = 20;
int H,dx[M][N],dy[M][N],n;
int max (int a,int b)
{
return a > b ? a : b;
}
int min(int a,int b)
{
return a > b ? b : a;
}
void Init()
{
int i,j;
for (i = 1; i <= n; i ++)
{
scanf ("%d",&H);
dx[i][0] = dy[i][0] = H;
}
for (j = 1; (1<<j) <= n; j ++)
for (i = 1; i +(1<<j)-1<=n; i ++)
{
dx[i][j] = min(dx[i][j-1],dx[i+(1<<(j-1))][j-1]);
dy[i][j] = max(dy[i][j-1],dy[i+(1<<(j-1))][j-1]);
}
}
int RMQ(int L ,int R)
{
int k = 0;
while ((1<<(k+1))<=R-L+1) k ++;
return max(dy[L][k],dy[R-(1<<k)+1][k]) - min(dx[L][k],dx[R-(1<<k)+1][k]);
}
int main ()
{
int m,a,b;
while (~scanf ("%d%d",&n,&m))
{
Init();
while (m --)
{
scanf ("%d%d",&a,&b);
printf ("%d\n",RMQ(a,b));
}
}
return 0;
}A better concise version:
#include <stdio.h>
#include <vector>
#include <iostream>
using namespace std;
class Node {
public:
int l, r, max, min;
Node(int ll = 0, int rr = 0, int max1 = 0, int min1 = 0) : l(ll), r(rr), max(max1), min(min1){}
};
void build(vector<Node>& tree, const vector<int>& height, int k, int l, int r) {
tree[k].l = l, tree[k].r = r;
if (l == r) {
tree[k].max = tree[k].min = height[l];
return;
}
build(tree, height, k*2+1, l, (l+r)/2);
build(tree, height, k*2+2, (l+r)/2+1, r);
tree[k].max = max(tree[k*2+1].max, tree[k*2+2].max);
tree[k].min = min(tree[k*2+1].min, tree[k*2+2].min);
}
int query(vector<Node>& tree, int k, int l, int r, int& maxv, int& minv) {
int max1, min1, max2, min2;
if (l == tree[k].l && r == tree[k].r) {
maxv = tree[k].max, minv = tree[k].min;
return maxv - minv;
}
int mid = (tree[k].l + tree[k].r) / 2;
if (r <= mid) {
return query(tree, k*2+1, l, r, maxv, minv);
}
else if (l >= mid+1) {
return query(tree, k*2+2, l, r, maxv, minv);
}
else {
query(tree, k*2+1, l, mid, max1, min1);
query(tree, k*2+2, mid+1, r, max2, min2);
maxv = max(max1, max2);
minv = min(min1, min2);
return maxv -minv;
}
}
int main() {
int N, Q, l, r, maxv, minv;
scanf("%d%d", &N, &Q);
vector<int> height(N,0);
vector<Node> tree(50001 * 3);
for (int i = 0; i < N; ++i)
scanf("%d", &height[i]);
build(tree, height, 0, 0, N-1);
for (int i = 0; i < Q; ++i) {
scanf("%d%d", &l, &r);
printf("%d\n", query(tree, 0, l-1, r-1, maxv, minv));
}
return 0;
}

本文介绍了一种高效的区间查询算法,用于解决在固定范围内寻找最大值与最小值的问题,并通过实例展示了如何利用该算法来减少计算复杂度。
5168

被折叠的 条评论
为什么被折叠?



