MATLAB中的svd与svds
设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。
[u,d,v]=svds(A,10)将得到最大的10个特征值及其对应的最大特征行向量和特征列向量,
[u,d,v]=svds(A,10,0)将得到最小的10个特征值及其对应的特征行向量和特征列向量,
[u,d,v]=svds(A,10,2)将得到与2最接近的10个特征值及其对应的特征行向量和特征列向量。
总之,相比svd,svds的可定制性更强。
奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。
U和V中分别是A的奇异向量,而S是A的奇异值。
AA'的正交单位特征向量组成U,特征值组成S'S,
A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。
MATLAB中的svd和svds函数用于奇异值分解。svds可以定制获取最大、最小或最接近特定值的奇异值。奇异值分解表达为A=U*S*V',其中U和V包含奇异向量,S包含奇异值,与特征值问题密切相关,广泛应用于矩阵分析和数值计算。
1173

被折叠的 条评论
为什么被折叠?



