
视觉算法
文章平均质量分 56
tanmengwen
这个作者很懒,什么都没留下…
展开
-
Correlation based similarity measures-Summary
Correlation based matching typically produces dense depth maps by calculating the disparity at each pixel within a neighborhood. This is achieved by taking a square window of certain size around the p翻译 2015-06-18 10:13:27 · 3624 阅读 · 0 评论 -
从Essential Matrix估计R,T
clccleart=rand(3,1)R=rodrigues(rand(3,1))T=[0 -t(3) t(2); t(3) 0 -t(1); -t(2) t(1) 0];E=T*R[U,S,V]=svd(E);disp('S?=?diag(1,1,0)')SW=[0 -1 0; 1 0 0; 0 0 1];P1=[U*W*V' U(:,3转载 2015-06-12 18:10:57 · 4852 阅读 · 0 评论 -
Levenberg–Marquardt algorithm
function [x,minf] = minLM(f,x0,beta,u,v,var,eps)format long;if nargin == 6 eps = 1.0e-6;endS = transpose(f)*f;k = length(f);n = length(x0);x0 = transpose(x0);A = jacobian(f,var);tol = 1;原创 2015-06-12 16:27:39 · 3819 阅读 · 0 评论 -
Gauss-Newton algorithm
function [x,minf] = minGN(f,x0,var,eps)format long;if nargin == 3 eps = 1.0e-6;endS = transpose(f)*f;k = length(f);n = length(x0);x0 = transpose(x0);tol = 1;A = jacobian(f,var);while to原创 2015-06-12 16:04:44 · 3753 阅读 · 0 评论 -
Lucas-Kanade algorithm
As we own quite powerful process capabilities, it’s possible to put a webcam pointing to the ground and to track points in order not to drift along x and y. In order to do this, we could use the Lucas翻译 2015-06-12 15:42:27 · 3751 阅读 · 0 评论