正弦定理
对于ΔABC\Delta ABCΔABC,有
asinA=bsinB=csinC\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}sinAa=sinBb=sinCc
证明:
\qquad作三角形ΔABC\Delta ABCΔABC的外接圆,连接BOBOBO并延长交圆OOO于点DDD,连CDCDCD
\qquad设外接圆的半径为RRR
\qquad若∠A\angle A∠A为锐角,则a=BDsin∠BDC=2RsinAa=BD\sin \angle BDC=2R\sin Aa=BDsin∠BDC=2RsinA
\qquad所以asinA=2R\dfrac{a}{\sin A}=2RsinAa=2R
\qquad若∠A\angle A∠A为直角,则a=2Ra=2Ra=2R,sinA=1\sin A=1sinA=1
\qquad所以asinA=2R\dfrac{a}{\sin A}=2RsinAa=2R
\qquad若∠A\angle A∠A为钝角,a=BDsin∠BDC=2Rsin(180∘−∠A)=2RsinAa=BD\sin \angle BDC=2R\sin(180^{\circ}-\angle A)=2R\sin Aa=BDsin∠BDC=2Rsin(180∘−∠A)=2RsinA
\qquad所以asinA=2R\dfrac{a}{\sin A}=2RsinAa=2R
\qquad同理可得bsinB=2R\dfrac{b}{\sin B}=2RsinBb=2R,csinC=2R\dfrac{c}{\sin C}=2RsinCc=2R
\qquad综上所述,asinA=bsinB=csinC=2R\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2RsinAa=sinBb=sinCc=2R
余弦定理
对于ΔABC\Delta ABCΔABC,有
a2=b2+c2−2bccosAa^2=b^2+c^2-2bc\cos Aa2=b2+c2−2bccosA
b2=a2+c2−2accosBb^2=a^2+c^2-2ac\cos Bb2=a2+c2−2accosB
c2=a2+b2−2bccosCc^2=a^2+b^2-2bc\cos Cc2=a2+b2−2bccosC
另一种表示方法为
cosA=b2+c2−a22bc\cos A=\dfrac{b^2+c^2-a^2}{2bc}cosA=2bcb2+c2−a2
cosB=a2+c2−b22ac\cos B=\dfrac{a^2+c^2-b^2}{2ac}cosB=2aca2+c2−b2
cosC=a2+b2−c22ab\cos C=\dfrac{a^2+b^2-c^2}{2ab}cosC=2aba2+b2−c2
证明:
\qquad过BBB作BD⊥ACBD\bot ACBD⊥AC交ACACAC于点DDD
\qquad若∠A\angle A∠A为锐角,根据勾股定理,a2=d2+(b−AD)2a^2=d^2+(b-AD)^2a2=d2+(b−AD)2
\qquad所以a2=d2+(b−AD)2=c2−AD2+b2−2b⋅AD+AD2=b2+c2−2bccos∠BACa^2=d^2+(b-AD)^2=c^2-AD^2+b^2-2b\cdot AD+AD^2=b^2+c^2-2bc\cos \angle BACa2=d2+(b−AD)2=c2−AD2+b2−2b⋅AD+AD2=b2+c2−2bccos∠BAC
\qquad若∠A\angle A∠A为直角,根据勾股定理,a2=b2+c2a^2=b^2+c^2a2=b2+c2,cosA=0\cos A=0cosA=0
\qquad所以a2=b2+c2=b2+c2−2bccos∠BACa^2=b^2+c^2=b^2+c^2-2bc\cos \angle BACa2=b2+c2=b2+c2−2bccos∠BAC
\qquad若∠A\angle A∠A为钝角,根据勾股定理,a2=CD2+d2a^2=CD^2+d^2a2=CD2+d2
\qquad所以a2=(AD+b)2+d2=AD2+2bAD+b2+c2−AD2=b2+c2−2bccos∠BACa^2=(AD+b)^2+d^2=AD^2+2bAD+b^2+c^2-AD^2=b^2+c^2-2bc\cos \angle BACa2=(AD+b)2+d2=AD2+2bAD+b2+c2−AD2=b2+c2−2bccos∠BAC
\qquad同理可得b2=a2+c2−2accosBb^2=a^2+c^2-2ac\cos Bb2=a2+c2−2accosB,c2=a2+b2−2bccosCc^2=a^2+b^2-2bc\cos Cc2=a2+b2−2bccosC