前置知识:第二类换元法
计算: ∫ 1 1 + e x d x \int \dfrac{1}{\sqrt{1+e^x}}dx ∫1+ex1dx
解:
\qquad
令
t
=
1
+
e
x
t=\sqrt{1+e^x}
t=1+ex,
x
=
ln
(
t
2
−
1
)
x=\ln(t^2-1)
x=ln(t2−1),
d
x
=
2
t
t
2
−
1
d
t
dx=\dfrac{2t}{t^2-1}dt
dx=t2−12tdt
\qquad 原式 = ∫ 1 t ⋅ 2 t t 2 − 1 d t = ∫ 2 t 2 − 1 d t =\int\dfrac 1t\cdot \dfrac{2t}{t^2-1}dt=\int \dfrac{2}{t^2-1}dt =∫t1⋅t2−12tdt=∫t2−12dt
= ∫ ( 1 t − 1 − 1 t + 1 ) d t = ln ( t − 1 ) − ln ( t + 1 ) + C \qquad\qquad =\int (\dfrac{1}{t-1}-\dfrac{1}{t+1})dt=\ln(t-1)-\ln(t+1)+C =∫(t−11−t+11)dt=ln(t−1)−ln(t+1)+C
= ln ( t − 1 t + 1 ) + C = ln ( 1 + e x − 1 1 + e x + 1 ) + C \qquad\qquad=\ln(\dfrac{t-1}{t+1})+C=\ln(\dfrac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1})+C =ln(t+1t−1)+C=ln(1+ex+11+ex−1)+C