洛必达法则学习

洛必达法则

若满足 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,型,则 lim ⁡ f ( x ) g ( x ) = lim ⁡ f ′ ( x ) g ′ ( x ) \lim\dfrac{f(x)}{g(x)}=\lim \dfrac{f'(x)}{g'(x)} limg(x)f(x)=limg(x)f(x)

  • 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,可直接使用洛必达, ∞ − ∞ , 0 ⋅ ∞ , 1 ∞ , ∞ 0 , 0 0 \infty-\infty,0\cdot\infty,1^\infty,\infty^0,0^0 ,0,1,0,00则需转化成 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,才能使用

  • lim ⁡ f ′ ( x ) g ′ ( x ) \lim \dfrac{f'(x)}{g'(x)} limg(x)f(x)仍满足 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,型,则可继续用 lim ⁡ f ′ ( x ) g ′ ( x ) = lim ⁡ f ′ ′ ( x ) g ′ ′ ( x ) \lim\dfrac{f'(x)}{g'(x)}=\lim \dfrac{f''(x)}{g''(x)} limg(x)f(x)=limg′′(x)f′′(x)

  • 洛必达不是万能的,求极限首选无穷小替换,再用洛必达。


0 0 \dfrac 00 00型未定式

lim ⁡ x → 0 x − sin ⁡ x x 3 \lim\limits_{x\rightarrow0}\dfrac{x-\sin x}{x^3} x0limx3xsinx

解:原式 = lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 sin ⁡ x 6 x = 1 6 lim ⁡ x → 0 sin ⁡ x x = 1 6 =\lim\limits_{x\rightarrow0}\dfrac{1-\cos x}{3x^2}=\lim\limits_{x\rightarrow0}\dfrac{\sin x}{6x}=\dfrac16 \lim\limits_{x\rightarrow0}\dfrac{\sin x}{x}=\dfrac 16 =x0lim3x21cosx=x0lim6xsinx=61x0limxsinx=61

如果一开始将 sin ⁡ x \sin x sinx替换为 x x x,则原式为 0 0 0,这样是错误的。无穷小替换一般在乘除时可用,但在加减时要慎用。


∞ ∞ \dfrac{\infty}{\infty} 型未定式

题1: lim ⁡ x → 0 + ln ⁡ sin ⁡ 3 x ln ⁡ sin ⁡ 2 x \lim\limits_{x\rightarrow0^+}\dfrac{\ln\sin 3x}{\ln\sin 2x} x0+limlnsin2xlnsin3x
解:原式 = lim ⁡ x → 0 + 1 sin ⁡ 3 x ⋅ cos ⁡ 3 x ⋅ 3 1 sin ⁡ 2 x ⋅ cos ⁡ 2 x ⋅ 2 = lim ⁡ x → 0 + 3 cos ⁡ 3 x 2 cos ⁡ 2 x ⋅ lim ⁡ x → 0 + sin ⁡ 2 x sin ⁡ 3 x = 3 2 ⋅ lim ⁡ x → 0 + 2 x 3 x = 3 2 × 2 3 = 1 =\lim\limits_{x\rightarrow 0^+}\dfrac{\frac{1}{\sin 3x}\cdot \cos 3x \cdot 3}{\frac{1}{\sin 2x}\cdot \cos 2x \cdot 2}=\lim\limits_{x\rightarrow 0^+}\dfrac{3\cos 3x}{2\cos 2x}\cdot \lim\limits_{x\rightarrow 0^+}\dfrac{\sin 2x}{\sin 3x}=\dfrac 32\cdot \lim\limits_{x\rightarrow 0^+}\dfrac{2x}{3x}=\dfrac 32\times\dfrac 23=1 =x0+limsin2x1cos2x2sin3x1cos3x3=x0+lim2cos2x3cos3xx0+limsin3xsin2x=23x0+lim3x2x=23×32=1

x → 0 x\rightarrow0 x0 a a a为常数,则 cos ⁡ a x \cos ax cosax趋近于 1 1 1


题2: lim ⁡ x → + ∞ x e x 2 x + e x \lim\limits_{x\rightarrow+\infty}\dfrac{xe^{\frac x2}}{x+e^x} x+limx+exxe2x

解:原式 = lim ⁡ x → + ∞ e x 2 + x 2 e x 2 1 + e x = lim ⁡ x → + ∞ 2 e x 2 + x e x 2 2 + 2 e x = lim ⁡ x → + ∞ 2 e x 2 + x 2 e x 2 2 e x = lim ⁡ x → + ∞ 4 + x 4 e x 2 = lim ⁡ x → + ∞ 1 2 e x 2 = 0 =\lim\limits_{x\rightarrow+\infty}\dfrac{e^{\frac x2}+\frac x2e^{\frac x2}}{1+e^x}=\lim\limits_{x\rightarrow+\infty}\dfrac{2e^{\frac x2}+xe^{\frac x2}}{2+2e^x}=\lim\limits_{x\rightarrow+\infty}\dfrac{2e^{\frac x2}+\frac x2e^{\frac x2}}{2e^x}=\lim\limits_{x\rightarrow+\infty}\dfrac{4+x}{4e^{\frac x2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{2e^{\frac x2}}=0 =x+lim1+exe2x+2xe2x=x+lim2+2ex2e2x+xe2x=x+lim2ex2e2x+2xe2x=x+lim4e2x4+x=x+lim2e2x1=0

由于 ( e x ) ′ = e x (e^x)'=e^x (ex)=ex,所以我们可以用洛必达法则将不含 e e e的部分通过求导去掉,留下含有 e e e的部分再求值。


∞ − ∞ \infty-\infty 型未定式

lim ⁡ x → 0 ( 1 x 2 − 1 x sin ⁡ x ) \lim\limits_{x\rightarrow0}(\dfrac{1}{x^2}-\dfrac{1}{x\sin x}) x0lim(x21xsinx1)

解:原式 = lim ⁡ x → 0 sin ⁡ x − x x 2 sin ⁡ x = lim ⁡ x → 0 sin ⁡ x − x x 3 = − lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 = − lim ⁡ x → 0 sin ⁡ x 6 x = − 1 6 lim ⁡ x → 0 sin ⁡ x x = − 1 6 =\lim\limits_{x\rightarrow0}\dfrac{\sin x-x}{x^2\sin x}=\lim\limits_{x\rightarrow0}\dfrac{\sin x-x}{x^3}=-\lim\limits_{x\rightarrow0}\dfrac{1-\cos x}{3x^2}=-\lim\limits_{x\rightarrow0}\dfrac{\sin x}{6x}=-\dfrac16 \lim\limits_{x\rightarrow0}\dfrac{\sin x}{x}=-\dfrac 16 =x0limx2sinxsinxx=x0limx3sinxx=x0lim3x21cosx=x0lim6xsinx=61x0limxsinx=61

此处将 ∞ − ∞ \infty-\infty 型转换为 0 0 \dfrac 00 00


0 ⋅ ∞ 0\cdot\infty 0型未定式

lim ⁡ x → 0 + x 2 ln ⁡ x \lim\limits_{x\rightarrow0^+}x^2\ln x x0+limx2lnx

解:原式 = lim ⁡ x → 0 + ln ⁡ x 1 x 2 = lim ⁡ x → 0 + 1 x − 2 x 3 = lim ⁡ x → 0 + − x 3 2 x = lim ⁡ x → 0 + − x 2 2 = 0 =\lim\limits_{x\rightarrow0^+}\dfrac{\ln x}{\frac{1}{x^2}}=\lim\limits_{x\rightarrow0^+}\dfrac{\frac 1x}{-\frac{2}{x^3}}=\lim\limits_{x\rightarrow0^+}-\dfrac{x^3}{2x}=\lim\limits_{x\rightarrow0^+}-\dfrac{x^2}{2}=0 =x0+limx21lnx=x0+limx32x1=x0+lim2xx3=x0+lim2x2=0

此处将 0 ⋅ ∞ 0\cdot\infty 0型转换为 ∞ ∞ \dfrac{\infty}{\infty}


1 ∞ 1^\infty 1型未定式

lim ⁡ x → 1 ( 2 − x ) 1 ln ⁡ x \lim\limits_{x\rightarrow1}(2-x)^{\frac{1}{\ln x}} x1lim(2x)lnx1

解:原式 = e lim ⁡ x → 1 ln ⁡ ( 2 − x ) 1 ln ⁡ x = e lim ⁡ x → 1 ln ⁡ ( 2 − x ) ln ⁡ x = e lim ⁡ x → 1 − 1 2 − x 1 x = e lim ⁡ x → 1 − x 2 − x = e − 1 =e^{\lim\limits_{x\rightarrow1}\ln(2-x)^\frac{1}{\ln x}}=e^{\lim\limits_{x\rightarrow1}\frac{\ln(2-x)}{\ln x}}=e^{\lim\limits_{x\rightarrow1}\frac{-\frac{1}{2-x}}{\frac1x}}=e^{\lim\limits_{x\rightarrow1}-\frac{x}{2-x}}=e^{-1} =ex1limln(2x)lnx1=ex1limlnxln(2x)=ex1limx12x1=ex1lim2xx=e1

此处将 1 ∞ 1^\infty 1型转换为 0 0 \dfrac 00 00

x → 1 x\rightarrow1 x1时, − x 2 − x -\dfrac{x}{2-x} 2xx不满足洛必达法则的要求,不能用洛必达法则,直接等于 − 1 -1 1


0 0 0^0 00未定式

lim ⁡ x → 0 + x x \lim\limits_{x\rightarrow0^+}x^x x0+limxx

解:原式 = e lim ⁡ x → 0 + ln ⁡ x x = e lim ⁡ x → 0 + x ln ⁡ x = e lim ⁡ x → 0 + ln ⁡ x 1 x = e lim ⁡ x → 0 + 1 x − 1 x 2 = e lim ⁡ x → 0 + − x = e 0 = 1 =e^{\lim\limits_{x\rightarrow0^+}\ln x^x}=e^{\lim\limits_{x\rightarrow0^+}x\ln x}=e^{\lim\limits_{x\rightarrow0^+}\frac{\ln x}{\frac 1x}}=e^{\lim\limits_{x\rightarrow0^+}\frac{\frac 1x}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\rightarrow0^+}-x}=e^0=1 =ex0+limlnxx=ex0+limxlnx=ex0+limx1lnx=ex0+limx21x1=ex0+limx=e0=1

此处将 0 0 0^0 00型转换为 ∞ ∞ \dfrac{\infty}{\infty}


∞ 0 \infty^0 0型未定式

lim ⁡ x → 0 ( cot ⁡ x ) x \lim\limits_{x\rightarrow0}(\cot x)^x x0lim(cotx)x

解:原式 = e lim ⁡ x → 0 ln ⁡ ( cot ⁡ x ) x = e lim ⁡ x → 0 x ln ⁡ cot ⁡ x = e lim ⁡ x → 0 ln ⁡ cot ⁡ x 1 x = e lim ⁡ x → 0 − 1 cot ⁡ x 1 sin ⁡ 2 x − 1 x 2 = e lim ⁡ x → 0 x 2 cot ⁡ x sin ⁡ 2 x = e lim ⁡ x → 0 1 cot ⁡ x = e lim ⁡ x → 0 tan ⁡ x = e 0 = 1 =e^{\lim\limits_{x\rightarrow0}\ln(\cot x)^x}=e^{\lim\limits_{x\rightarrow0}x\ln\cot x}=e^{\lim\limits_{x\rightarrow0}\frac{\ln\cot x}{\frac 1x}}=e^{\lim\limits_{x\rightarrow0}\frac{-\frac{1}{\cot x}\frac{1}{\sin^2 x}}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\rightarrow0}\frac{x^2}{\cot x\sin^2 x}}=e^{\lim\limits_{x\rightarrow0}\frac{1}{\cot x}}=e^{\lim\limits_{x\rightarrow0}\tan x}=e^0=1 =ex0limln(cotx)x=ex0limxlncotx=ex0limx1lncotx=ex0limx21cotx1sin2x1=ex0limcotxsin2xx2=ex0limcotx1=ex0limtanx=e0=1

此处将 ∞ 0 \infty^0 0型转换为 ∞ ∞ \dfrac{\infty}{\infty}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值