洛必达法则
若满足 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞型,则 lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) \lim\dfrac{f(x)}{g(x)}=\lim \dfrac{f'(x)}{g'(x)} limg(x)f(x)=limg′(x)f′(x)
-
0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞可直接使用洛必达, ∞ − ∞ , 0 ⋅ ∞ , 1 ∞ , ∞ 0 , 0 0 \infty-\infty,0\cdot\infty,1^\infty,\infty^0,0^0 ∞−∞,0⋅∞,1∞,∞0,00则需转化成 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞才能使用
-
若 lim f ′ ( x ) g ′ ( x ) \lim \dfrac{f'(x)}{g'(x)} limg′(x)f′(x)仍满足 0 0 , ∞ ∞ \dfrac 00,\dfrac \infty\infty 00,∞∞型,则可继续用 lim f ′ ( x ) g ′ ( x ) = lim f ′ ′ ( x ) g ′ ′ ( x ) \lim\dfrac{f'(x)}{g'(x)}=\lim \dfrac{f''(x)}{g''(x)} limg′(x)f′(x)=limg′′(x)f′′(x)
-
洛必达不是万能的,求极限首选无穷小替换,再用洛必达。
0 0 \dfrac 00 00型未定式
求 lim x → 0 x − sin x x 3 \lim\limits_{x\rightarrow0}\dfrac{x-\sin x}{x^3} x→0limx3x−sinx
解:原式 = lim x → 0 1 − cos x 3 x 2 = lim x → 0 sin x 6 x = 1 6 lim x → 0 sin x x = 1 6 =\lim\limits_{x\rightarrow0}\dfrac{1-\cos x}{3x^2}=\lim\limits_{x\rightarrow0}\dfrac{\sin x}{6x}=\dfrac16 \lim\limits_{x\rightarrow0}\dfrac{\sin x}{x}=\dfrac 16 =x→0lim3x21−cosx=x→0lim6xsinx=61x→0limxsinx=61
如果一开始将 sin x \sin x sinx替换为 x x x,则原式为 0 0 0,这样是错误的。无穷小替换一般在乘除时可用,但在加减时要慎用。
∞ ∞ \dfrac{\infty}{\infty} ∞∞型未定式
题1: 求
lim
x
→
0
+
ln
sin
3
x
ln
sin
2
x
\lim\limits_{x\rightarrow0^+}\dfrac{\ln\sin 3x}{\ln\sin 2x}
x→0+limlnsin2xlnsin3x
解:原式
=
lim
x
→
0
+
1
sin
3
x
⋅
cos
3
x
⋅
3
1
sin
2
x
⋅
cos
2
x
⋅
2
=
lim
x
→
0
+
3
cos
3
x
2
cos
2
x
⋅
lim
x
→
0
+
sin
2
x
sin
3
x
=
3
2
⋅
lim
x
→
0
+
2
x
3
x
=
3
2
×
2
3
=
1
=\lim\limits_{x\rightarrow 0^+}\dfrac{\frac{1}{\sin 3x}\cdot \cos 3x \cdot 3}{\frac{1}{\sin 2x}\cdot \cos 2x \cdot 2}=\lim\limits_{x\rightarrow 0^+}\dfrac{3\cos 3x}{2\cos 2x}\cdot \lim\limits_{x\rightarrow 0^+}\dfrac{\sin 2x}{\sin 3x}=\dfrac 32\cdot \lim\limits_{x\rightarrow 0^+}\dfrac{2x}{3x}=\dfrac 32\times\dfrac 23=1
=x→0+limsin2x1⋅cos2x⋅2sin3x1⋅cos3x⋅3=x→0+lim2cos2x3cos3x⋅x→0+limsin3xsin2x=23⋅x→0+lim3x2x=23×32=1
x → 0 x\rightarrow0 x→0, a a a为常数,则 cos a x \cos ax cosax趋近于 1 1 1
题2: 求 lim x → + ∞ x e x 2 x + e x \lim\limits_{x\rightarrow+\infty}\dfrac{xe^{\frac x2}}{x+e^x} x→+∞limx+exxe2x
解:原式 = lim x → + ∞ e x 2 + x 2 e x 2 1 + e x = lim x → + ∞ 2 e x 2 + x e x 2 2 + 2 e x = lim x → + ∞ 2 e x 2 + x 2 e x 2 2 e x = lim x → + ∞ 4 + x 4 e x 2 = lim x → + ∞ 1 2 e x 2 = 0 =\lim\limits_{x\rightarrow+\infty}\dfrac{e^{\frac x2}+\frac x2e^{\frac x2}}{1+e^x}=\lim\limits_{x\rightarrow+\infty}\dfrac{2e^{\frac x2}+xe^{\frac x2}}{2+2e^x}=\lim\limits_{x\rightarrow+\infty}\dfrac{2e^{\frac x2}+\frac x2e^{\frac x2}}{2e^x}=\lim\limits_{x\rightarrow+\infty}\dfrac{4+x}{4e^{\frac x2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{2e^{\frac x2}}=0 =x→+∞lim1+exe2x+2xe2x=x→+∞lim2+2ex2e2x+xe2x=x→+∞lim2ex2e2x+2xe2x=x→+∞lim4e2x4+x=x→+∞lim2e2x1=0
由于 ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex,所以我们可以用洛必达法则将不含 e e e的部分通过求导去掉,留下含有 e e e的部分再求值。
∞ − ∞ \infty-\infty ∞−∞型未定式
求 lim x → 0 ( 1 x 2 − 1 x sin x ) \lim\limits_{x\rightarrow0}(\dfrac{1}{x^2}-\dfrac{1}{x\sin x}) x→0lim(x21−xsinx1)
解:原式 = lim x → 0 sin x − x x 2 sin x = lim x → 0 sin x − x x 3 = − lim x → 0 1 − cos x 3 x 2 = − lim x → 0 sin x 6 x = − 1 6 lim x → 0 sin x x = − 1 6 =\lim\limits_{x\rightarrow0}\dfrac{\sin x-x}{x^2\sin x}=\lim\limits_{x\rightarrow0}\dfrac{\sin x-x}{x^3}=-\lim\limits_{x\rightarrow0}\dfrac{1-\cos x}{3x^2}=-\lim\limits_{x\rightarrow0}\dfrac{\sin x}{6x}=-\dfrac16 \lim\limits_{x\rightarrow0}\dfrac{\sin x}{x}=-\dfrac 16 =x→0limx2sinxsinx−x=x→0limx3sinx−x=−x→0lim3x21−cosx=−x→0lim6xsinx=−61x→0limxsinx=−61
此处将 ∞ − ∞ \infty-\infty ∞−∞型转换为 0 0 \dfrac 00 00型
0 ⋅ ∞ 0\cdot\infty 0⋅∞型未定式
求 lim x → 0 + x 2 ln x \lim\limits_{x\rightarrow0^+}x^2\ln x x→0+limx2lnx
解:原式 = lim x → 0 + ln x 1 x 2 = lim x → 0 + 1 x − 2 x 3 = lim x → 0 + − x 3 2 x = lim x → 0 + − x 2 2 = 0 =\lim\limits_{x\rightarrow0^+}\dfrac{\ln x}{\frac{1}{x^2}}=\lim\limits_{x\rightarrow0^+}\dfrac{\frac 1x}{-\frac{2}{x^3}}=\lim\limits_{x\rightarrow0^+}-\dfrac{x^3}{2x}=\lim\limits_{x\rightarrow0^+}-\dfrac{x^2}{2}=0 =x→0+limx21lnx=x→0+lim−x32x1=x→0+lim−2xx3=x→0+lim−2x2=0
此处将 0 ⋅ ∞ 0\cdot\infty 0⋅∞型转换为 ∞ ∞ \dfrac{\infty}{\infty} ∞∞型
1 ∞ 1^\infty 1∞型未定式
求 lim x → 1 ( 2 − x ) 1 ln x \lim\limits_{x\rightarrow1}(2-x)^{\frac{1}{\ln x}} x→1lim(2−x)lnx1
解:原式 = e lim x → 1 ln ( 2 − x ) 1 ln x = e lim x → 1 ln ( 2 − x ) ln x = e lim x → 1 − 1 2 − x 1 x = e lim x → 1 − x 2 − x = e − 1 =e^{\lim\limits_{x\rightarrow1}\ln(2-x)^\frac{1}{\ln x}}=e^{\lim\limits_{x\rightarrow1}\frac{\ln(2-x)}{\ln x}}=e^{\lim\limits_{x\rightarrow1}\frac{-\frac{1}{2-x}}{\frac1x}}=e^{\lim\limits_{x\rightarrow1}-\frac{x}{2-x}}=e^{-1} =ex→1limln(2−x)lnx1=ex→1limlnxln(2−x)=ex→1limx1−2−x1=ex→1lim−2−xx=e−1
此处将 1 ∞ 1^\infty 1∞型转换为 0 0 \dfrac 00 00型
当 x → 1 x\rightarrow1 x→1时, − x 2 − x -\dfrac{x}{2-x} −2−xx不满足洛必达法则的要求,不能用洛必达法则,直接等于 − 1 -1 −1
0 0 0^0 00未定式
求 lim x → 0 + x x \lim\limits_{x\rightarrow0^+}x^x x→0+limxx
解:原式 = e lim x → 0 + ln x x = e lim x → 0 + x ln x = e lim x → 0 + ln x 1 x = e lim x → 0 + 1 x − 1 x 2 = e lim x → 0 + − x = e 0 = 1 =e^{\lim\limits_{x\rightarrow0^+}\ln x^x}=e^{\lim\limits_{x\rightarrow0^+}x\ln x}=e^{\lim\limits_{x\rightarrow0^+}\frac{\ln x}{\frac 1x}}=e^{\lim\limits_{x\rightarrow0^+}\frac{\frac 1x}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\rightarrow0^+}-x}=e^0=1 =ex→0+limlnxx=ex→0+limxlnx=ex→0+limx1lnx=ex→0+lim−x21x1=ex→0+lim−x=e0=1
此处将 0 0 0^0 00型转换为 ∞ ∞ \dfrac{\infty}{\infty} ∞∞型
∞ 0 \infty^0 ∞0型未定式
求 lim x → 0 ( cot x ) x \lim\limits_{x\rightarrow0}(\cot x)^x x→0lim(cotx)x
解:原式 = e lim x → 0 ln ( cot x ) x = e lim x → 0 x ln cot x = e lim x → 0 ln cot x 1 x = e lim x → 0 − 1 cot x 1 sin 2 x − 1 x 2 = e lim x → 0 x 2 cot x sin 2 x = e lim x → 0 1 cot x = e lim x → 0 tan x = e 0 = 1 =e^{\lim\limits_{x\rightarrow0}\ln(\cot x)^x}=e^{\lim\limits_{x\rightarrow0}x\ln\cot x}=e^{\lim\limits_{x\rightarrow0}\frac{\ln\cot x}{\frac 1x}}=e^{\lim\limits_{x\rightarrow0}\frac{-\frac{1}{\cot x}\frac{1}{\sin^2 x}}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\rightarrow0}\frac{x^2}{\cot x\sin^2 x}}=e^{\lim\limits_{x\rightarrow0}\frac{1}{\cot x}}=e^{\lim\limits_{x\rightarrow0}\tan x}=e^0=1 =ex→0limln(cotx)x=ex→0limxlncotx=ex→0limx1lncotx=ex→0lim−x21−cotx1sin2x1=ex→0limcotxsin2xx2=ex→0limcotx1=ex→0limtanx=e0=1
此处将 ∞ 0 \infty^0 ∞0型转换为 ∞ ∞ \dfrac{\infty}{\infty} ∞∞型