目录
0.1任务队列: LinkedBlockingQueue 没有设置固定容量大小
0、引言
为甚麽线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式?
0.1任务队列: LinkedBlockingQueue 没有设置固定容量大小
//例如
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
newFixedThreadPool()、newSingleThreadExecutor() 底层代码 中 LinkedBlockingQueue 没有设置容量大小,默认是 Integer.MAX_VALUE, 可以认为是无界的。线程池中 多余的线程会被缓存到 LinkedBlockingQueue中,最终内存撑爆。
0.2最大线程数量是: Integer.MAX_VALUE
//例如
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
newCachedThreadPool()、newScheduledThreadPool() 的 底层代码 中 的 最大线程数(maximumPoolSize) 是 Integer.MAX_VALUE,可以认为是无限大,如果线程池中,执行中的线程没有及时结束,并且不断地有线程加入并执行,最终会将内存撑爆。
0.3拒绝策略:不能自定义
//Executors 底层其实是使用的 ThreadPoolExecutor 的方式 创建的,但是使用的是 ThreadPoolExecutor 的默认策略
//默认策略
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
//构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
1、ThreadPoolExecutor
1.1基本架构
- ThreadPoolExecutor(类)-AbstractExecutorService(抽象类)-ExecutorService(接口)-Executor(接口)
- Executor 定义 execute 方法来执行任务,入参是 Runnable
public interface Executor {
void execute(Runnable command);
}
- ExecutorService 丰富了对任务的执行和管理的功能
// 关闭,不会接受新的任务,也不会等待未完成的任务
void shutdown();
// executor 是否已经关闭了,返回值 true 表示已关闭
boolean isShutdown();
// 所有的任务是否都已经终止,是的话,返回 true
boolean isTerminated();
// 在超时时间内,等待剩余的任务终止
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException;
// 提交有返回值的任务,使用 get 方法可以阻塞等待任务的执行结果返回
<T> Future<T> submit(Callable<T> task);
// 提交没有返回值的任务,如果使用 get 方法的话,任务执行完之后得到的是 null 值
Future<?> submit(Runnable task);
// 给定任务集合,返回已经执行完成的 Future 集合,每个返回的 Future 都是 isDone = true 的状态
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException;
// 给定任务中有一个执行成功就返回,如果抛异常,其余未完成的任务将被取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException;
- AbstractExecutorService 是一个抽象类,封装了 Executor 的很多通用功能
// 把 Runnable 转化成 RunnableFuture
// RunnableFuture 是一个接口,继承了 Runnable 和 Future
// FutureTask 是 RunnableFuture 的实现类,主要是对任务进行各种管理
// Runnable + Future => RunnableFuture => FutureTask
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
// submit也是我们平时线程池提交任务的方法
// 提交无返回值的任务
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
// ftask 其实是 FutureTask
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);// 子类ThreadPoolExecutor实现的
return ftask;
}
// 提交有返回值的任务
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
// ftask 其实是 FutureTask
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);// 子类ThreadPoolExecutor实现的
return ftask;
}
// 任务转化为FutureTask
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
1.2提交方法源码解析
- 提交 Runnable 和 Callable 任务并且都转化成 FutureTask(是实际的任务类型);
- 使用父类的submit方法进行实际的流程,返回Future任务;
- 使用 execute 方法是线程池的主流程;
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
// 1.工作的线程小于核心线程数,创建新的线程,成功返回,失败不抛异常
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
// 线程池状态可能发生变化
c = ctl.get();
}
// 2.线程池状态正常,并且可以入队的话,尝试入队列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 如果线程池状态异常 尝试从队列中移除任务,可以移除的话就拒绝掉任务
if (!isRunning(recheck) && remove(command))
reject(command);
// 发现可运行的线程数是 0,就初始化一个线程,这里是个极限情况,入队的时候,突然发现
// 可用线程都被回收了
else if (workerCountOf(recheck) == 0)
// Runnable是空的,不会影响新增线程,但是线程在 start 的时候不会运行
// Thread.run() 里面有判断
addWorker(null, false);
}
// 3.队列满了,开启线程到 maxSize,4.如果失败进行拒绝策略,
else if (!addWorker(command, false))
reject(command);
}
- execute里面多次调用了addWork方法,
// 结合线程池的情况看是否可以添加新的 worker
// firstTask 不为空可以直接执行,为空执行不了,Thread.run()方法有判断,Runnable为空不执行
// core 为 true 表示线程最大新增个数是 coresize,false 表示最大新增个数是 maxsize
// 返回 true 代表成功,false 失败
// break retry 跳到retry处,且不再进入循环
// continue retry 跳到retry处,且再次进入循环
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
// 先是各种状态的校验
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// rs >= SHUTDOWN 说明线程池状态不正常
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
// 工作中的线程数大于等于容量,或者大于等于 coreSize or maxSize
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
// break 结束 retry 的 for 循环
break retry;
c = ctl.get(); // Re-read ctl
// 线程池状态被更改
if (runStateOf(c) != rs)
// 跳转到retry位置
continue retry;
}
}
//开始进行进行创建work并且start执行
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 巧妙的设计,Worker 本身是个 Runnable.
// 在初始化的过程中,会把 worker 丢给 thread 去初始化
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 启动线程,实际上去执行 Worker.run 方法
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
首选进行了各种条件的验证,然后将任务加入,并且通过Worker类获取对应任务的线程,并且启动线程start
- addWork方法里创建了Work类,并且进行执行线程start
// 线程池中任务执行的最小单元
// Worker 继承 AQS,具有锁功能
// Worker 实现 Runnable接口,run方法对应外部的runWorker方法,所有本身是一个可执行的任务
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
// 任务运行的线程
final Thread thread;
// 需要执行的任务
Runnable firstTask;
// 非常巧妙的设计,Worker本身是个 Runnable,把自己作为任务传递给 thread
// 初始化线程
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 把 Worker 自己作为 thread 运行的任务
this.thread = getThreadFactory().newThread(this);
}
public void run() {
runWorker(this);// 外部方法,Worker是内部类,ThreadPoolExecutor是类
}
private static final long serialVersionUID = 6138294804551838833L;
// Lock methods
// 0 代表没有锁住,1 代表锁住
protected boolean isHeldExclusively() {
return getState() != 0;
}
// 尝试加锁,CAS 赋值为 1,表示锁住
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
// 尝试释放锁,释放锁没有 CAS 校验,可以任意的释放锁
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
- run方法里又调用了runWorker方法
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
//帮助gc回收
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 就是,在这里进行线程的具体管理,而不是实际消亡
// task 为空的情况:
// 1:任务入队列了,极限情况下,发现没有运行的线程,于是新增一个线程;
// 2:线程执行完任务执行,再次回到 while 循环。
// 如果 task 为空,会使用 getTask 方法阻塞从队列中拿数据,如果拿不到数据,会阻塞住
while (task != null || (task = getTask()) != null) {
//锁住 worker
w.lock();
// 线程池 stop 中,但是线程没有到达中断状态,帮助线程中断
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//执行 before 钩子函数
beforeExecute(wt, task);
Throwable thrown = null;
try {
//同步执行任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//执行 after 钩子函数,如果这里抛出异常,会覆盖 catch 的异常
//所以这里异常最好不要抛出来
afterExecute(task, thrown);
}
} finally {
//任务执行完成,计算解锁
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
//做一些抛出异常的善后工作
processWorkerExit(w, completedAbruptly);
}
}
runWorker,主要就是使用当前线程执行任务的run方法,并且配有执行前和执行后的钩子函数处理!
- runWorker里调用了run方法
public void run() {
// 状态不是任务创建,或者当前任务已经有线程在执行了
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
// Callable 不为空,并且已经初始化完成
if (c != null && state == NEW) {
V result;
boolean ran;
try {
// 调用执行
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
// 给 outcome 赋值
if (ran)
set(result);
}
} finally {
runner = null;
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
run方法里实际是执行FutureTask任务的call方法并且把返回值进行赋值
- 整体流程:
@ThreadPoolExecute执行上层抽象类的submit方法,@submit里先将任务封装成FutureTask任务,在执行execute方法
@execute方法里实际又新创建一个Worker类(继承AQS,并且实现了Runnable接口)封装任务然后进行addWorker加入
@addWorker里先进行了状态验证,然后加入任务,在获取到Worker类对应的线程并且start启动,创建线程执行run方法
@Worker类里的run方法,调用了runWorker方法,该方法调用FutureTask任务的run方法并加入了执行前/后进行处理
@FutuerTask任务的run实际是调用任务的call方法并且将返回值进行设置
1.3线程的管理解析
- 实际入口在runWorker函数里面的getTask方法里
....
while (task != null || (task = getTask()) != null) {
//锁住 worker
w.lock();
....
// 从阻塞队列中拿任务
private Runnable getTask() {
boolean timedOut = false;
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
//线程池关闭 && 队列为空,不需要在运行了,直接放回
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
// 释放线程
int wc = workerCountOf(c);
// true 运行的线程数大于 coreSize || 核心线程也可以被灭亡
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 队列以 LinkedBlockingQueue 为例,timedOut 为 true 的话说明下面 poll 方法执行返回的是 null
// 说明在等待 keepAliveTime 时间后,队列中仍然没有数据
// 再加上 wc > 1 || workQueue.isEmpty() 的判断,说明此线程已经空闲了 keepAliveTime 了
// 所以使用 compareAndDecrementWorkerCount 方法使线程池数量减少 1
// 并且直接 return,return 之后,此空闲的线程会自动被回收
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
// 线程获取任务
try {
// 从队列中阻塞拿 worker
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
// 设置已超时,说明此时队列没有数据
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
无限循环,管理线程的消亡和任务的获取(可以通过无限阻塞的take,也可以使用设置超时的poll)