data.detach().cpu().numpy()作用

该博客演示了如何在PyTorch中将张量从GPU移动到CPU,并进一步转换为NumPy数组。通过使用`detach()`方法断开与计算图的连接,然后调用`cpu()`和`numpy()`,可以在不保留梯度信息的情况下在不同设备间自由转换数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch

if __name__ == '__main__':
	if torch.cuda.is_available():
		device = 'cuda'
	else:
		device = 'cpu'
	data = torch.rand(2,3, requires_grad=True)
	print(data)
	
	data_detach = data.detach()
	print('detach():', data_detach )
	
	data_cpu = data.detach().cpu()
	print('detach().cpu():', data_cpu)
	
	data_numpy = data.detach().cpu().numpy()
	print('detach().cpu().numpy():', data_numpy)
	


附官方文档:

https://pytorch.org/docs/stable/autograd.html?highlight=detach#torch.Tensor.detach

  • detach()
    Returns a new Tensor, detached from the current graph.The result will never require gradient.
  • cpu()
    Returns a copy of this object in CPU memory.If this object is already in CPU memory and on the correct device, then no copy is performed and the original object is returned.
  • numpy()
    Returns self tensor as a NumPy ndarray. This tensor and the returned ndarray share the same underlying storage. Changes to self tensor will be reflected in the ndarray and vice versa.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值