PyTorch-基本数据操作(Numpy)

PyTorch-基本数据操作(Numpy)

硬件:NVIDIA-GTX1080

软件:Windows7、python3.6.5、pytorch-gpu-0.4.1

一、基础知识

1、Torch 为神经网络界的 Numpy,torch.from_numpy() torch_data.numpy() 即可完成torch数据和numpy数据的相互转化

2、Torch 浮点数接收方式,torch.FloatTensor(),数据计算方式和numpy相似,如abs, sin, mean...

3、Torch 矩阵点乘方式,torch.mm(tensor, tensor),与numpy.matmul(data, data) 类似

二、代码展示

Example1:

import torch
import numpy as np

np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()
print(
    '\nnumpy array:', np_data,          # [[0 1 2], [3 4 5]]
    '\ntorch tensor:', torch_data,      #  0  1  2 \n 3  4  5    [torch.LongTensor of size 2x3]
    '\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]]
)

Example2:

import torch
import numpy as np

# abs 绝对值计算
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
print(
    '\nabs',
    '\nnumpy: ', np.abs(data),          # [1 2 1 2]
    '\ntorch: ', torch.abs(tensor)      # [1 2 1 2]
)

# sin   三角函数 sin
print(
    '\nsin',
    '\nnumpy: ', np.sin(data),      # [-0.84147098 -0.90929743  0.84147098  0.90929743]
    '\ntorch: ', torch.sin(tensor)  # [-0.8415 -0.9093  0.8415  0.9093]
)

# mean  均值
print(
    '\nmean',
    '\nnumpy: ', np.mean(data),         # 0.0
    '\ntorch: ', torch.mean(tensor)     # 0.0
)

Example3:

import torch
import numpy as np

# matrix multiplication 矩阵点乘
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
# correct method
print(
    '\nmatrix multiplication (matmul)',
    '\nnumpy: ', np.matmul(data, data),     # [[7, 10], [15, 22]]
    '\ntorch: ', torch.mm(tensor, tensor)   # [[7, 10], [15, 22]]
)

三、参考:

https://morvanzhou.github.io/

 

任何问题请加唯一QQ2258205918(名称samylee)!

唯一VX:samylee_csdn

(ngp) PS D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main> python run_nerf.py --config configs/chair.txt --finest_res 512 --log2_hashmap_size 19 --lrate 0.01 --lrate_decay 10 A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.4 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\run_nerf.py", line 18, in <module> from run_nerf_helpers import * File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\run_nerf_helpers.py", line 7, in <module> from hash_encoding import HashEmbedder, SHEncoder File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\hash_encoding.py", line 8, in <module> from utils import get_voxel_vertices File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\utils.py", line 6, in <module> from ray_utils import get_rays, get_ray_directions, get_ndc_rays File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\ray_utils.py", line 2, in <module> from kornia import create_meshgrid File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\ngp\Lib\site-packages\kornia\__init__.py", line 20, in <module> from . import filters File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\ngp\Lib\site-packages\kornia\filters\__init__.py", line 60, in <module> from .kernels_geometry import get_motion_kernel2d, get_motion_kernel3d File "D:\zhuomian\HashNeRF-pytorch-main\HashNeRF-pytorch-main\ngp\Lib\site-packages\kornia\filters\kernels_geometry.py", line 24, in <module> from kornia.geometry.transform import rotate, rotate3d File "D:\zhuomian\HashNeRF-pytorch-m
03-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值