scikit-learn 线性回归拟合正弦函数,预测房价

线性回归实战
本文深入探讨了线性回归在拟合复杂函数如正弦波及预测房价中的应用。通过调整多项式特征的阶数,展示了如何平衡模型的复杂度以避免过拟合或欠拟合。同时,使用Boston房价数据集进行了实证研究,验证了不同阶数的多项式模型在训练和交叉验证集上的表现。

随书代码,阅读笔记。

 

  • 线性回归拟合正弦函数

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

n_dots = 200

X = np.linspace(-2 * np.pi, 2 * np.pi, n_dots)
Y = np.sin(X) + 0.2 * np.random.rand(n_dots) - 0.1
X = X.reshape(-1, 1)
Y = Y.reshape(-1, 1);


from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

def polynomial_model(degree=1):
    polynomial_features = PolynomialFeatures(degree=degree,
                                             include_bias=False)
    linear_regression = LinearRegression(normalize=True)
    pipeline = Pipeline([("polynomial_features", polynomial_features),
                         ("linear_regression", linear_regression)])
    return pipeline


from sklearn.metrics import mean_squared_error

degrees = [2, 3, 5, 10]
results = []
for d in degrees:
    model = polynomial_model(degree=d)
    model.fit(X, Y)
    train_score = model.score(X, Y)
    mse = mean_squared_error(Y, model.predict(X))
    results.append({"model": model, "degree": d, "score": train_score, "mse": mse})
for r in results:
    print("degree: {}; train score: {}; mean squared error: {}".format(r["degree"], r["score"], r["mse"]))

:
from matplotlib.figure import SubplotParams

plt.figure(figsize=(12, 6), dpi=200, subplotpars=SubplotParams(hspace=0.3))
for i, r in enumerate(results):
    fig = plt.subplot(2, 2, i+1)
    plt.xlim(-8, 8)
    plt.title("LinearRegression degree={}".format(r["degree"]))
    plt.scatter(X, Y, s=5, c='b', alpha=0.5)
    plt.plot(X, r["model"].predict(X), 'r-')
  • 预测房价
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_boston

boston = load_boston()
X = boston.data
y = boston.target
X.shape

boston.feature_names


from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3)

import time
from sklearn.linear_model import LinearRegression

model = LinearRegression()

#model = LinearRegression(normalize=True) #归一化,能加快算法收敛速度,优化算法训练效率,无法提升算法准确性

start = time.clock()
model.fit(X_train, y_train)

train_score = model.score(X_train, y_train)
cv_score = model.score(X_test, y_test)
print('elaspe: {0:.6f}; train_score: {1:0.6f}; cv_score: {2:.6f}'.format(time.clock()-start, train_score, cv_score))

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

def polynomial_model(degree=1):
    polynomial_features = PolynomialFeatures(degree=degree,
                                             include_bias=False)
    linear_regression = LinearRegression(normalize=True)
    pipeline = Pipeline([("polynomial_features", polynomial_features),
                         ("linear_regression", linear_regression)])
    return pipeline

model = polynomial_model(degree=2)

start = time.clock()
model.fit(X_train, y_train)

train_score = model.score(X_train, y_train)
cv_score = model.score(X_test, y_test)
print('elaspe: {0:.6f}; train_score: {1:0.6f}; cv_score: {2:.6f}'.format(time.clock()-start, train_score, cv_score))

#elaspe: 0.016412; train_score: 0.930547; cv_score: 0.860465

#画出学习曲线
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplit

cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
plt.figure(figsize=(18, 4), dpi=200)
title = 'Learning Curves (degree={0})'
degrees = [1, 2, 3]

start = time.clock()
plt.figure(figsize=(18, 4), dpi=200)
for i in range(len(degrees)):
    plt.subplot(1, 3, i + 1)
    plot_learning_curve(plt, polynomial_model(degrees[i]), title.format(degrees[i]), X, y, ylim=(0.01, 1.01), cv=cv)

print('elaspe: {0:.6f}'.format(time.clock()-start))

多项式的阶数对训练模型性能影响很大,阶数低,容易欠拟合,阶数高,容易过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值