设计AI智能体的基本框架
AI智能体的设计通常包括自然语言处理、对话管理、知识库集成和用户交互模块。以下是一个基于Python的聊天陪伴机器人实现方案。
环境准备
安装必要的Python库:
pip install transformers torch sentence-transformers flask
核心模块设计
自然语言处理模块
使用预训练的Transformer模型处理用户输入并生成响应。
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
class NLPProcessor:
def __init__(self, model_name="microsoft/DialoGPT-medium"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def generate_response(self, input_text, max_length=100):
inputs = self.tokenizer.encode(input_text, return_tensors="pt")
outputs = self.model.generate(inputs, max_length=max_length)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
对话管理模块
维护对话状态和上下文。
class DialogueManager:
def __init__(self):
self.context = []
def update_context(self, user_input, bot_response):
self.context.append((user_input, bot_response))
def get_context(self):
return self.context[-3:] if len(self.context) >= 3 else self.context
情感分析模块
增强陪伴机器人的情感感知能力。
from transformers import pipeline
class EmotionAnalyzer:
def __init__(self):
self.classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
def analyze_emotion(self, text):
result = self.classifier(text)[0]
return result['label'], result['score']
完整实现示例
import random
from datetime import datetime
class CompanionBot:
def __init__(self):
self.nlp = NLPProcessor()
self.dialogue = DialogueManager()
self.emotion = EmotionAnalyzer()
self.greetings = ["你好!", "很高兴见到你", "今天过得怎么样?"]
self.farewells = ["再见!", "期待下次聊天", "保重!"]
def respond(self, user_input):
# 情感分析
emotion, score = self.emotion.analyze_emotion(user_input)
# 生成响应
if any(word in user_input.lower() for word in ['hi', 'hello', '你好']):
response = random.choice(self.greetings)
elif any(word in user_input.lower() for word in ['bye', '再见']):
response = random.choice(self.farewells)
else:
context = " ".join([f"User: {u}\nBot: {r}" for u, r in self.dialogue.get_context()])
full_input = f"{context}\nUser: {user_input}"
response = self.nlp.generate_response(full_input)
# 更新对话上下文
self.dialogue.update_context(user_input, response)
return response
def get_time_response(self):
now = datetime.now()
return f"现在是 {now.strftime('%H:%M')},日期是 {now.strftime('%Y-%m-%d')}"
Web接口实现
使用Flask创建简单的Web界面:
from flask import Flask, request, jsonify
app = Flask(__name__)
bot = CompanionBot()
@app.route('/chat', methods=['POST'])
def chat():
user_input = request.json.get('message', '')
response = bot.respond(user_input)
return jsonify({'response': response})
if __name__ == '__main__':
app.run(debug=True)
对话示例
bot = CompanionBot()
print(bot.respond("你好"))
print(bot.respond("今天天气怎么样?"))
print(bot.respond("我有点难过"))
print(bot.respond("再见"))
功能扩展建议
- 记忆增强:添加长期记忆存储,记住用户偏好
- 多模态交互:整合图像和语音处理能力
- 个性化学习:根据用户反馈调整响应风格
- API集成:连接天气、新闻等外部API
注意事项
- 生产环境应考虑模型优化和性能调优
- 对话安全性需要特别关注,避免敏感信息泄露
- 长期运行的机器人需要定期更新知识库
- 考虑添加用户反馈机制持续改进对话质量
这个实现提供了基础的聊天陪伴机器人框架,可以根据具体需求进一步扩展功能。核心在于自然语言处理模块的选择和对话上下文的合理管理。
实现Python智能体对接手机APP的详细步骤
搭建后端API服务
使用Flask或FastAPI创建RESTful API接口,供手机APP调用。以下是一个基于Flask的示例:
from flask import Flask, request, jsonify
import json
app = Flask(__name__)
@app.route('/api/process', methods=['POST'])
def process_request():
data = request.get_json()
user_input = data.get('input')
# 智能体处理逻辑
processed_output = intelligent_agent(user_input)
return jsonify({
'status': 'success',
'output': processed_output
})
def intelligent_agent(input_text):
# 这里实现核心智能逻辑
response = f"Processed: {input_text}"
return response
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
实现WebSocket实时通信
对于需要实时交互的场景,可以使用WebSocket协议:
from flask_socketio import SocketIO, emit
socketio = SocketIO(app, cors_allowed_origins="*")
@socketio.on('client_message')
def handle_message(data):
response = intelligent_agent(data['message'])
emit('server_response', {'message': response})
def intelligent_agent(message):
# 实现自然语言处理等智能功能
return f"AI: I received '{message}'"
数据处理函数实现
实现核心的数据处理功能:
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
class TextProcessor:
def __init__(self):
self.vectorizer = TfidfVectorizer()
def preprocess_text(self, text):
# 文本预处理
processed = text.lower().strip()
return processed
def vectorize_text(self, text):
# 文本向量化
return self.vectorizer.transform([text])
def calculate_similarity(self, vec1, vec2):
# 计算相似度
return np.dot(vec1, vec2.T).toarray()[0][0]
数据库交互实现
使用SQLAlchemy实现数据持久化:
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy(app)
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True)
interactions = db.relationship('Interaction', backref='user')
class Interaction(db.Model):
id = db.Column(db.Integer, primary_key=True)
user_id = db.Column(db.Integer, db.ForeignKey('user.id'))
input_text = db.Column(db.String(500))
output_text = db.Column(db.String(500))
timestamp = db.Column(db.DateTime)
手机APP对接示例
Android端使用Retrofit调用API的示例:
interface ApiService {
@POST("/api/process")
fun processInput(@Body request: ProcessRequest): Call<ProcessResponse>
}
data class ProcessRequest(val input: String)
data class ProcessResponse(val status: String, val output: String)
val retrofit = Retrofit.Builder()
.baseUrl("http://your-server-ip:5000/")
.addConverterFactory(GsonConverterFactory.create())
.build()
val service = retrofit.create(ApiService::class.java)
安全认证实现
添加JWT认证保障接口安全:
from flask_jwt_extended import JWTManager, create_access_token, jwt_required
app.config['JWT_SECRET_KEY'] = 'your-secret-key'
jwt = JWTManager(app)
@app.route('/login', methods=['POST'])
def login():
username = request.json.get('username')
password = request.json.get('password')
# 验证逻辑
access_token = create_access_token(identity=username)
return jsonify(access_token=access_token)
@app.route('/protected', methods=['GET'])
@jwt_required()
def protected():
return jsonify(message="Protected endpoint")
异步任务处理
使用Celery处理耗时任务:
from celery import Celery
celery = Celery('tasks', broker='redis://localhost:6379/0')
@celery.task
def async_processing_task(input_data):
# 耗时处理逻辑
result = intensive_processing(input_data)
return result
def intensive_processing(data):
# 实现复杂计算或模型推理
return {"result": "processed_data"}
性能监控实现
添加性能监控中间件:
from prometheus_flask_exporter import PrometheusMetrics
metrics = PrometheusMetrics(app)
metrics.info('app_info', 'Application info', version='1.0')
@app.route('/metrics')
def metrics_endpoint():
return metrics.export()
错误处理实现
全局错误处理中间件:
@app.errorhandler(404)
def not_found(error):
return jsonify({
'status': 'error',
'message': 'Resource not found'
}), 404
@app.errorhandler(500)
def server_error(error):
return jsonify({
'status': 'error',
'message': 'Internal server error'
}), 500
单元测试实现
使用pytest编写测试用例:
import pytest
from your_app import app
@pytest.fixture
def client():
with app.test_client() as client:
yield client
def test_api_endpoint(client):
response = client.post('/api/process',
json={'input': 'test input'})
assert response.status_code == 200
assert 'output' in response.get_json()
部署配置
使用Gunicorn部署Flask应用的配置:
# gunicorn_config.py
bind = "0.0.0.0:5000"
workers = 4
timeout = 120
keepalive = 5
容器化部署
Dockerfile示例:
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["gunicorn", "-c", "gunicorn_config.py", "app:app"]
CI/CD配置
GitHub Actions工作流示例:
name: Python CI
on: [push]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
- name: Install dependencies
run: pip install -r requirements.txt
- name: Run tests
run: pytest
以上代码提供了从后端服务搭建到手机APP对接的完整实现方案,涵盖了API设计、实时通信、数据处理、安全认证等关键环节。实际部署时需要根据具体需求调整配置参数和业务逻辑。
对接鸿蒙系统手机APP的Python实现步骤
环境准备
确保安装以下工具和库:
- Python 3.8或更高版本
hdc(HarmonyOS Device Connector)工具,用于设备调试ohos-build库,用于鸿蒙应用构建requests库,用于HTTP通信
pip install requests ohos-build
设备连接与认证
通过hdc工具连接鸿蒙设备,并获取设备信息。以下是设备连接的Python封装代码:
import subprocess
def connect_harmony_device(device_ip):
"""连接鸿蒙设备"""
try:
result = subprocess.run(
["hdc", "connect", device_ip],
capture_output=True,
text=True,
check=True
)
return result.stdout
except subprocess.CalledProcessError as e:
raise RuntimeError(f"设备连接失败: {e.stderr}")
def get_device_info():
"""获取设备信息"""
try:
result = subprocess.run(
["hdc", "shell", "getprop"],
capture_output=True,
text=True,
check=True
)
return result.stdout
except subprocess.CalledProcessError as e:
raise RuntimeError(f"获取设备信息失败: {e.stderr}")
鸿蒙APP接口调用
通过HTTP或RPC调用鸿蒙APP的接口。以下是HTTP接口调用的示例:
import requests
def call_harmony_app_api(api_url, method="GET", params=None, headers=None):
"""调用鸿蒙APP的API接口"""
try:
response = requests.request(
method,
api_url,
params=params,
headers=headers,
timeout=10
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise RuntimeError(f"API调用失败: {e}")
数据交互与同步
实现Python与鸿蒙APP之间的数据交互。以下是数据同步的示例代码:
def sync_data_to_harmony(data, target_url):
"""同步数据到鸿蒙APP"""
try:
response = requests.post(
target_url,
json=data,
headers={"Content-Type": "application/json"},
timeout=10
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise RuntimeError(f"数据同步失败: {e}")
事件监听与回调
监听鸿蒙APP的事件并触发Python回调。以下是事件监听的示例:
import threading
def listen_harmony_events(event_url, callback):
"""监听鸿蒙APP事件"""
def event_listener():
try:
with requests.get(event_url, stream=True) as response:
for line in response.iter_lines():
if line:
callback(line.decode("utf-8"))
except requests.exceptions.RequestException as e:
raise RuntimeError(f"事件监听失败: {e}")
thread = threading.Thread(target=event_listener)
thread.daemon = True
thread.start()
完整示例
以下是一个完整的示例,展示如何连接设备、调用API并监听事件:
def main():
# 连接设备
connect_harmony_device("192.168.1.100")
print(get_device_info())
# 调用API
api_response = call_harmony_app_api(
"http://192.168.1.100:8080/api/data",
method="GET"
)
print(api_response)
# 同步数据
sync_response = sync_data_to_harmony(
{"key": "value"},
"http://192.168.1.100:8080/api/sync"
)
print(sync_response)
# 监听事件
def event_callback(event_data):
print(f"收到事件: {event_data}")
listen_harmony_events(
"http://192.168.1.100:8080/api/events",
event_callback
)
if __name__ == "__main__":
main()
注意事项
- 确保鸿蒙设备的IP地址和端口正确。
- 鸿蒙APP需提前暴露HTTP或RPC接口。
- 事件监听需在后台线程运行,避免阻塞主程序。
4万+

被折叠的 条评论
为什么被折叠?



