[leetcode] Dungeon game

本文探讨了一个骑士在迷宫中寻找公主的问题,通过两种方法确定骑士初始所需的最小生命值:一是使用Dijkstra算法,二是采用动态规划方法。文章详细介绍了这两种方法的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).

In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Write a function to determine the knight's minimum initial health so that he is able to rescue the princess.

For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT-> RIGHT -> DOWN -> DOWN.

-2 (K) -3 3
-5          -10    1
10          30    -5 (P)

Notes:
The knight's health has no upper bound.

Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.


Solution 1: Dijkstra 单元最短路

Dijkstra 算法不能求解有负权边的图,而这题的图存在负权边,之所以可以用Dijkstra是因为题目不是求在终点的最大HP,而是路径中的最大HP的最小值。

由于Dijkstra每次选取与起始点最近的节点更新,即尽量使HP大,所以答案不可能比当前HP小。

class Solution {
public:
    class loc
    {
        public:
        bool operator<( const loc &b ) const
        {
            return val < b.val;
        }
        loc( int _x, int _y, int _val ) : x(_x), y(_y), val(_val) { }
        int x, y;
        int val;
    };
    
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        int m = dungeon.size();
        if( m == 0 ) return 0;
        int n = dungeon[0].size();
        int i, j;
        for( i = 0; i < m; i++ )
        {
            vector<int> tmp;
            tmp.assign( n, -1e9 );
            mark.push_back( tmp );
        }
        priority_queue<loc> q;
        loc start(0, 0, dungeon[0][0]);
        q.push( start );
        
        int min = dungeon[0][0];
        while( !q.empty() )
        {
            loc cur = q.top();
            q.pop();
            if( cur.val < min ) min = cur.val;
            if( cur.x == m-1 && cur.y == n-1 )
            {
                break;
            }
            if( cur.val < mark[cur.x][cur.y] ) continue;
            mark[cur.x][cur.y] = cur.val;
            if( cur.x+1 < m )
            {
                loc next( cur.x+1, cur.y, cur.val+dungeon[cur.x+1][cur.y] );
                q.push( next );
            }
            if( cur.y+1 < n )
            {
                loc next( cur.x, cur.y+1, cur.val+dungeon[cur.x][cur.y+1] );
                q.push( next );
            }
        }
        if( min > 0 ) return 1;
        return -min+1;
    }
    
    vector<vector<int>> mark;
};

Solution 2: DP

若在某点(i,j),已知(i+1,j)和(i,j+1)的答案为a和b,那么可得在点(i,j)的答案为

Max( 1, Min( dp[i+1][j], dp[i][j+1] ) - dungeon[i][j] )

class Solution {
public:
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        int m = dungeon.size();
        if( m == 0 ) return 1;
        int n = dungeon[0].size();
        
        int dp[m][n];
        int i, j;
        dp[m-1][n-1] = max( 1, 1-dungeon[m-1][n-1] );
        for( i = m-2; i >= 0; i-- )
            dp[i][n-1] = max( 1, dp[i+1][n-1]-dungeon[i][n-1] );
        for( j = n-2; j >= 0; j-- )
            dp[m-1][j] = max( 1, dp[m-1][j+1]-dungeon[m-1][j] );
        for( i = m-2; i >= 0; i-- )
        {
            for( j = n-2; j >= 0; j-- )
            {
                dp[i][j] = max( 1, min(dp[i+1][j], dp[i][j+1])-dungeon[i][j] );
            }
        }
        
        return dp[0][0];
    }
    
    inline int max( int a, int b )
    {
        return (a>b)? a:b;
    }
    
    inline int min( int a, int b )
    {
        return (a<b)? a:b;
    }
};


内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值