网上有比较多的目标检测数据集增强的方法,但是其数据的格式在txt中是
x_min,y_min,x_max,y_max,class
然后我现在做的任务是检测不规则的四边形,数据标签是
x1,y1,x2,y2,x3,y3,x4,y4,class
所以重新写一个增强的程序,这里记录一下,下次用起来就方面多了
import numpy as np
import cv2
import math
from PIL import Image, ImageDraw
from skimage.util import random_noise
from skimage import exposure
import random
import os
def rotate_box(img,pts,maxangle,scale=1):
w = img.shape[1]
h = img.shape[0]
angle=random.uniform(0, maxangle)
rangle = np.deg2rad(angle)
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
rot_img = cv2.warpAffine(img,