pytorch+resfix训练自己的数据# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # T

实习要求,学习一下,在此记录用imnet_resnet50_scratch训练的过程

源代码下载:https://github.com/facebookresearch/FixRes.git

主要需要的修改imnet_resnet50_scratch/train.py

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import os.path as osp
from typing import Optional
import torch
import torch.distributed
import torch.nn as nn
import tqdm
import torch.optim as optim
import attr
from torchvision import datasets
import torchvision.models as models
import numpy as np
from .config import TrainerConfig, ClusterConfig
from .transforms import get_transforms
from .samplers import RASampler
@attr.s(auto_attribs=True)
class TrainerState:
    """
    Contains the state of the Trainer.
    It can be saved to checkpoint the training and loaded to resume it.
    """

    epoch: int
    accuracy:float
    model: nn.Module
    optimizer: optim.Optimizer
    lr_scheduler: torch.optim.lr_scheduler._LRScheduler

    def save(self, filename: str) -> None:
        data = attr.asdict(self)
        # store only the state dict
        data["model"] = self.model.state_dict()
        data["optimizer"] = self.optimizer.state_dict()
        data["lr_scheduler"] = self.lr_scheduler.state_dict()
        data["accuracy"] = self.accuracy
        torch.save(data, filename)

    @classmethod
    def load(cls, filename: str, default: "TrainerState") -> "TrainerState":
        data = torch.load(filename)
        # We need this default to load the state dict
        model = default.model
        model.load_state_dict(data["model"])
        data["model"] = model

        optimizer = default.optimizer
        optimizer.load_state_dict(data["optimizer"])
        data["optimizer"] = optimizer

        lr_scheduler = default.lr_scheduler
        lr_scheduler.load_state_dict(data["lr_scheduler"])
        data["lr_scheduler"] = lr_scheduler
        return cls(**data)


class Trainer:
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值