实习要求,学习一下,在此记录用imnet_resnet50_scratch训练的过程
源代码下载:https://github.com/facebookresearch/FixRes.git
主要需要的修改imnet_resnet50_scratch/train.py
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import os.path as osp
from typing import Optional
import torch
import torch.distributed
import torch.nn as nn
import tqdm
import torch.optim as optim
import attr
from torchvision import datasets
import torchvision.models as models
import numpy as np
from .config import TrainerConfig, ClusterConfig
from .transforms import get_transforms
from .samplers import RASampler
@attr.s(auto_attribs=True)
class TrainerState:
"""
Contains the state of the Trainer.
It can be saved to checkpoint the training and loaded to resume it.
"""
epoch: int
accuracy:float
model: nn.Module
optimizer: optim.Optimizer
lr_scheduler: torch.optim.lr_scheduler._LRScheduler
def save(self, filename: str) -> None:
data = attr.asdict(self)
# store only the state dict
data["model"] = self.model.state_dict()
data["optimizer"] = self.optimizer.state_dict()
data["lr_scheduler"] = self.lr_scheduler.state_dict()
data["accuracy"] = self.accuracy
torch.save(data, filename)
@classmethod
def load(cls, filename: str, default: "TrainerState") -> "TrainerState":
data = torch.load(filename)
# We need this default to load the state dict
model = default.model
model.load_state_dict(data["model"])
data["model"] = model
optimizer = default.optimizer
optimizer.load_state_dict(data["optimizer"])
data["optimizer"] = optimizer
lr_scheduler = default.lr_scheduler
lr_scheduler.load_state_dict(data["lr_scheduler"])
data["lr_scheduler"] = lr_scheduler
return cls(**data)
class Trainer: