181. X-Sequence
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
memory limit per test: 4096 KB
input: standard
output: standard
output: standard
Let {xi} be the infinite sequence of integers:
1) x0 = A;
2) xi = (alpha * xi-1^2 + beta * xi-1 + gamma) mod M, for i >= 1.
Your task is to find xk if you know A, alpha, beta, gamma, M and k.
1) x0 = A;
2) xi = (alpha * xi-1^2 + beta * xi-1 + gamma) mod M, for i >= 1.
Your task is to find xk if you know A, alpha, beta, gamma, M and k.
Input
Given A (1 <= A <= 10000), alpha (0 <= alpha <= 100), beta (0 <= beta <= 100), gamma (0 <= gamma <= 100), M (1 <= M <= 1000), k (0 <= k <= 10^9). All numbers are integer.
Output
Write xk.
Sample test(s)
Input
1 1 1 1 10 1
Output
3
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n[10000];
int check(int x){
for(int i=x-1;i>=1;i--){
if(n[x]==n[i])return i;
}
return -1;
}
int main(){
ll A,a,b,c,M,k;
scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&A,&a,&b,&c,&M,&k);
if(k==0){
printf("%I64d",A);
return 0;
}
n[0]=A;
for(int i=1;;i++){
n[i]=(a*n[i-1]*n[i-1]%M+b*n[i-1]%M+c)%M;
if(k==i){
printf("%I64d",n[k]);
return 0;
}
int ans=check(i);
if(ans==-1)continue;
printf("%I64d",n[ans+(k-ans)%(i-ans)]);
return 0;
}
return 0;
}