二分 Jamie's Contact Groups poj 2289

本文介绍了一种优化联系人分组的算法实现,通过最小化最大分组大小来提高搜索效率。该算法使用图论中的最大流最小割理论解决实际问题,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jamie's Contact Groups
Time Limit: 7000MS Memory Limit: 65536K
Total Submissions:8451 Accepted: 2871

Description

Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very long contact list in her cell phone. The contact list has become so long that it often takes a long time for her to browse through the whole list to find a friend's number. As Jamie's best friend and a programming genius, you suggest that she group the contact list and minimize the size of the largest group, so that it will be easier for her to search for a friend's number among the groups. Jamie takes your advice and gives you her entire contact list containing her friends' names, the number of groups she wishes to have and what groups every friend could belong to. Your task is to write a program that takes the list and organizes it into groups such that each friend appears in only one of those groups and the size of the largest group is minimized.

Input

There will be at most 20 test cases. Ease case starts with a line containing two integers N and M. where N is the length of the contact list and M is the number of groups. N lines then follow. Each line contains a friend's name and the groups the friend could belong to. You can assume N is no more than 1000 and M is no more than 500. The names will contain alphabet letters only and will be no longer than 15 characters. No two friends have the same name. The group label is an integer between 0 and M - 1. After the last test case, there is a single line `0 0' that terminates the input.

Output

For each test case, output a line containing a single integer, the size of the largest contact group.

Sample Input

3 2
John 0 1
Rose 1
Mary 1
5 4
ACM 1 2 3
ICPC 0 1
Asian 0 2 3
Regional 1 2
ShangHai 0 2
0 0

Sample Output

2
2


#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;


const int MAX_D=2000+5;
const int MAX_B=2000000+5;
const int INF=1e9;


int tot;


int head[MAX_D];
int headt[MAX_D];
int iter[MAX_D];
int level[MAX_D];
struct node{
    int to;
    int cap;
    int rev;
    int next;
};
node edge[2*MAX_B];
node edget[2*MAX_B];




void add_edge(int a,int b,int c){


    edge[tot].to=b;
    edge[tot].cap=c;
    edge[tot].rev=tot+1;
    edge[tot].next=head[a];
    head[a]=tot++;


    edge[tot].to=a;
    edge[tot].cap=0;
    edge[tot].rev=tot-1;
    edge[tot].next=head[b];
    head[b]=tot++;


}




void bfs(int s){
    memset(level,-1,sizeof(level));
    queue<int> que;
    level[s]=0;
    que.push(s);
    while(!que.empty()){
        int v=que.front();que.pop();
        for(int i=head[v];i!=0;i=edge[i].next){
            node &e=edge[i];
            if(e.cap>0&&level[e.to]<0){
                level[e.to]=level[v]+1;
                que.push(e.to);
            }
        }
    }
}


int dfs(int v,int t,int f){
    if(v==t)return f;
    for(int &i=iter[v];i!=0;i=edge[i].next){
        node &e = edge[i];
        if(e.cap>0&&level[v]<level[e.to]){
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0){
                e.cap-=d;
                edge[e.rev].cap+=d;
                return d;
            }
        }
    }


    return 0;
}


int max_flow(int s,int t){
    int flow=0;
    while(1){
        bfs(s);
        if(level[t]<0)return flow;
        for(int i=0;i<MAX_D;i++){
            iter[i]=head[i];
        }
        int f;
        while((f=dfs(s,t,INF))>0){
            flow+=f;
        }
    }
}




void solve(){
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        if(n==0&&m==0)break;
        tot=1;
        memset(head,0,sizeof(head));
        for(int i=1;i<=n;i++){
            add_edge(1,i+2,1);
        }
        for(int i=1;i<=n;i++){
            char s[20];
            scanf("%s",s);
            while(getchar()!='\n'){
                int x;
                scanf("%d",&x);
                add_edge(i+2,x+1+n+2,1);
            }
        }

        int tott=tot;
        for(int i=1;i<n+m+5;i++){
            headt[i]=head[i];
        }
        for(int i=1;i<tot;i++){
            edget[i]=edge[i];
        }

        int left=0,right=n,ans=0;
        while(left<=right){
            int mid=(left+right)>>1;
            tot=tott;
            for(int i=1;i<n+m+5;i++){
                head[i]=headt[i];
            }
            for(int i=1;i<tot;i++){
                edge[i]=edget[i];
            }
            for(int i=1;i<=m;i++){
                add_edge(n+i+2,2,mid);
            }
            int w=max_flow(1,2);
            if(w==n){
                ans=mid;
                right=mid-1;
            }
            else{
                left=mid+1;
            }
        }
        printf("%d\n",ans);
    }
}


int main()
{
    solve();


    return 0;
}

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 华为移动服务(Huawei Mobile Services,简称 HMS)是一个全面开放的移动服务生态系统,为企业和开发者提供了丰富的工具和 API,助力他们构建、运营和推广应用。其中,HMS Scankit 是华为推出的一款扫描服务 SDK,支持快速集成到安卓应用中,能够提供高效且稳定的二维码和条形码扫描功能,适用于商品扫码、支付验证、信息获取等多种场景。 集成 HMS Scankit SDK 主要包括以下步骤:首先,在项目的 build.gradle 文件中添加 HMS Core 库和 Scankit 依赖;其次,在 AndroidManifest.xml 文件中添加相机访问和互联网访问权限;然后,在应用程序的 onCreate 方法中调用 HmsClient 进行初始化;接着,可以选择自定义扫描界面或使用 Scankit 提供的默认扫描界面;最后,实现 ScanCallback 接口以处理扫描成功和失败的回调。 HMS Scankit 内部集成了开源的 Zxing(Zebra Crossing)库,这是一个功能强大的条码和二维码处理库,提供了解码、生成、解析等多种功能,既可以单独使用,也可以与其他扫描框架结合使用。在 HMS Scankit 中,Zxing 经过优化,以更好地适应华为设备,从而提升扫描性能。 通常,ScanKitDemoGuide 包含了集成 HMS Scankit 的示例代码,涵盖扫描界面的布局、扫描操作的启动和停止以及扫描结果的处理等内容。开发者可以参考这些代码,快速掌握在自己的应用中实现扫码功能的方法。例如,启动扫描的方法如下: 处理扫描结果的回调如下: HMS Scankit 支持所有安卓手机,但在华为设备上能够提供最佳性能和体验,因为它针对华为硬件进行了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值