sgu 222. Little Rooks 组合数学

本文探讨了在n×n的国际象棋棋盘上放置k个战车的方法数量,确保没有两个战车处于互相攻击的位置。通过组合数学的方法给出了高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

222. Little Rooks
time limit per test: 0.25 sec.
memory limit per test: 65536 KB
input: standard
output: standard



Inspired by a "Little Bishops" problem, Petya now wants to solve problem for rooks. 

A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move horizontally and vertically from its current position and two rooks attack each other if one is on the path of the other. 

Given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n × n chessboard so that no two of them are in attacking positions. 

Input

The input file contains two integers n (1 ≤ n ≤ 10) and k (0 ≤ k ≤ n2). 

Output

Print a line containing the total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions. 

Sample test(s)

Input
4 4 
Output
24 


题意每行每列选一个,所以首先排除k>n的情况。

先看n==k的情况,从1到n可以得到递推关系n!。

如果有空行(空列)C(x,y);x 空行 y 总行数 。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll nn[11]={1,1,2,6,24,120,720,5040,40320,362880,3628800};
int main(){
    int n,k;scanf("%d%d",&n,&k);
    if(k>n)printf("0");else printf("%I64d",nn[k]*(nn[n]/nn[n-k]/nn[k])*(nn[n]/nn[n-k]/nn[k]));
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值