DBSCAN(Density-Based Spatial Clustering of Applications with Noise)基于密度的聚类方法介绍

前言

聚类算法是无监督学习中最经典的问题之一,虽然 K-Means 用得广泛,但它有明显的局限性:

  • 无法识别任意形状的簇
  • 需要提前指定簇的个数 K
  • 对噪声和离群点非常敏感

上一篇介绍了K-Means算法,本文将介绍一下DBSCAN(Density-Based Spatial Clustering of Applications with Noise)基于密度的噪声应用空间聚类,可以不用担心这些局限!

DBSCAN简介

DBSCAN 是一种基于密度的聚类算法,核心思想是:

密度高的区域形成簇,密度低的区域是噪声或边界”。

与 K-Means 不同,DBSCAN 不要求指定簇的个数,而是通过“密度”定义簇。

DBSCAN 的核心概念

1. 邻域(ε邻域)

对于任意一点 ppp,其ε邻域是以 ppp 为圆心、半径为 ε 的圆(或球)内的点。

2. 密度可达(density reachable)

如果点 qqq 在点 ppp 的 ε 邻域内,且 ppp 是“核心点”,那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的知更鸟

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值