K-Means算法详细解析:从原理到实践

前言

K-Means 是一种非常经典、常用的 聚类算法。它属于无监督学习范畴,广泛应用于图像压缩、市场细分、社交网络分析、用户画像等场景。本文将由浅入深逐带你逐步全面了解 K-Means这个算法的原理到底是什么。

聚类介绍

**聚类(Clustering)**是将数据按“相似性”划分为若干组的过程,每组称为一个“簇(Cluster)”。

  • 输入:一堆没有标签的数据点。
  • 输出:这些点被划分为 K 组,每组内点相似、组与组之间差异大。

可以这么理解:老师把学生按身高或成绩分成不同的小组。

K-Means 介绍

K-Means 是一种“划分式聚类算法”。它的目标是:将数据划分成 K 个簇,使得同簇样本尽可能相似,不同簇样本尽可能不同。

每个簇用一个“质心(Centroid)”表示,质心就是这组数据的平均点。

K-Means 算法流程

K-Means 的算法流程很简单,说白了就是搞一个分组游戏,比如下数据划分。

输入:

  • 数据集 X={x1,x2,…,xn}X = \{x_1, x_2, \ldots, x_n\}X={x1,x2,,xn}
  • 要分成的簇数 K

步骤:

  1. 初始化 K 个中心点(质心):随机选 K 个样本点作为初始质心。
  2. 分配步骤(Assignment step):将每个样本分配给最近的质心
  3. 更新步骤(Update step):对每个簇,计算其所有成员的平均值作为新的质心。
  4. 迭代执行步骤 2 和 3,直到质心不再变化或达到最大迭代次数。

目标函数:
K-Means 实际上在最小化所有点到其所属簇中心的欧几里得距离平方之和,即:

J=∑i=1K∑x∈Ci∥x−μi∥2 J = \sum_{i=1}^{K} \sum_{x \in C_i} \| x - \mu_i \|^2 J=i=1KxCixμi2

其中 CiC_iCi 是第 i 个簇,μi\mu_iμi 是该簇的质心。

数学原理理解

选“质心”

因为根据数学推导,一组点到某个点的欧几里得平方距离和最小值,就是所有点的平均值。这也解释了为什么质心更新为“平均值”。

能收敛

K-Means 迭代过程中,每一步都在减少目标函数 JJJ 的值,且 K 种分法有限,所以必定收敛(虽然可能收敛到局部最优)。

K 的选取问题

K 是一个超参数,用户需要手动指定。

常见选法:

肘部法(Elbow Method):

  • 计算不同 K 值下的总误差平方和 SSE(Sum of Squared Errors)。
  • 绘制 K vs SSE 曲线,找到“SSE下降明显变缓”的“肘部”,这个点对应的 K 就是最优值。

这么做,画一张图,横轴是 K 值,纵轴是聚类误差(SSE)。

  • K 小的时候,增加 K 会显著降低误差;

  • 当 K 增大到一定值时,误差下降幅度变小;

  • 那个“下降开始变缓的转折点”就像人的“手肘”——就是最优 K!

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

X, _ = make_blobs(n_samples=500, centers=5, random_state=42)

sse = []
K_range = range(1, 10)
for k in K_range:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(X)
    sse.append(kmeans.inertia_)  # inertia_ 就是 SSE

plt.plot(K_range, sse, marker='o')
plt.xlabel("K")
plt.ylabel("SSE")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.title("肘部法选择最佳K")
plt.show()

在这里插入图片描述

轮廓系数(Silhouette Coefficient):

衡量样本在簇内的紧密程度与簇间的分离度,值越高越好。
在这里插入图片描述

from sklearn.metrics import silhouette_score

scores = []
for k in range(2, 10):
    kmeans = KMeans(n_clusters=k, random_state=42)
    labels = kmeans.fit_predict(X)
    score = silhouette_score(X, labels)
    scores.append(score)

plt.plot(range(2, 10), scores, marker='o')
plt.xlabel("K")
plt.ylabel("轮廓系数")
plt.title("用轮廓系数选最佳K")
plt.show()

在这里插入图片描述

K-Means 的优缺点

优点:

  • 算法简单高效,易实现
  • 聚类结果容易理解
  • 速度快,适合大规模数据

缺点:

  • 必须预先指定 K
  • 对初始质心敏感,可能陷入局部最优
  • 不能处理非球形或不同大小密度的簇
  • 对异常值敏感

K-Means示例代码

我们用 sklearn 快速实现 K-Means 聚类:

import matplotlib.pyplot as plt
from matplotlib import font_manager
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

# 生成模拟数据
X, y_true = make_blobs(n_samples=300, centers=4, cluster_std=1, random_state=42)
font = font_manager.FontProperties(fname='C:/Windows/Fonts/simfang.ttf')
# 可视化数据
plt.scatter(X[:, 0], X[:, 1], s=30)
plt.title("原始数据分布", fontproperties=font)
plt.show()

# KMeans 聚类
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
            s=200, c='red', marker='X')
plt.title("K-Means 聚类结果", fontproperties=font)
plt.show()

在这里插入图片描述

在这里插入图片描述

常见变体与扩展

  • K-Means++:改进初始质心选择,避免陷入局部最优
  • Mini-Batch K-Means:使用小批量数据进行迭代,适合大数据
  • Bisecting K-Means:层次化地进行 KMeans 聚类
  • Spectral Clustering:结合图论和 KMeans 的方法

总结

K-Means 是一把“快速有效”的聚类工具,理解了它的原理之后,可以灵活用于很多任务中。记得注意:

  • K 的选择很关键;
  • 适合球形簇、相似大小的簇
  • 可结合其他方法(如 PCA)进行降维预处理;
  • 可与其他算法(如 DBSCAN、GMM)互补使用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的知更鸟

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值