【计算机视觉40例】案例06:缺陷检测

本文介绍了计算机视觉中的缺陷检测技术,通过OpenCV库的minEnclosingCircle函数检测对象的最小包围圆形,并结合距离变换进行前景背景划分,从而识别图像中的残次品。案例涉及轮廓分析、面积对比以及图像预处理,为实际应用提供了一种有效的方法。

导读】本文是专栏《计算机视觉40例简介》的第6个案例《缺陷检测》。该专栏简要介绍李立宗主编《计算机视觉40例——从入门到深度学习(OpenCV-Python)》一书的40个案例。

目前,该书已经在电子工业出版社出版,大家可以在京东、淘宝、当当等平台购买。

大家可以在公众号“计算机视觉之光”回复关键字【案例06】获取本文案例的源代码及使用的测试图片等资料。

针对本书40个案例的每一个案例,分别录制了介绍视频。如果嫌看文字版麻烦,可以关注公众号“计算机视觉之光”直接观看视频介绍版。

缺陷检测指将图像中的残次品筛选出来。如图1所示,左侧的图像中包含正品(完整的药片)、残次品(不完整的药片),右侧图像中显示了检测的结果。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superdont

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值