Bayesian Networks Independencies

本文探讨了概率论中独立性的定义及其与因子分解的关系。详细介绍了事件与随机变量的独立性条件,以及条件独立性的概念,并通过d-分离原则解释了图形模型中变量间独立性的判断方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Independence

  1. For events α,β, Pαβ if:
    • P(α,β)=P(α)P(β)
    • P(α|β)=P(α)
    • P(β|α)=P(β)
  2. For random variables X,Y,PXY if:
    • P(X,Y)=P(X)P(Y)
    • P(X|Y)=P(X)
    • P(Y|X)=P(Y)

Conditional Independence

For (sets of) random variables X,Y,Z, P(XY|Z) if:
- P(X,Y|Z)=P(X|Z)P(Y|Z)
- P(X|Y,Z)=P(X|Z)
- P(Y|X,Z)=P(Y|Z)
- P(X,Y|Z)ϕ1(X,Z)ϕ2(Y,Z)

d-seperated

X and Y are d-seperated in G given Z if there is no active trail in G between X and Y given Z, d-sepG(X,Y|Z)

Factorization Independence: BNs

  • Theorem: If P factorized over G, and d-sepG(X,Y|Z), then P satisfies (XY|Z)
  • Any node is d-seperated from its non-descendants given its parents.
  • If P factorizes over G, then in P, any variable is independent of its non-descendants given its parents.
  • I-maps
    • d-separation in GP satisfies corresponding independence statement
      I(G)={(X,Y|Z):d-sepG(X,Y|Z)}
    • Definition: If P satisfies I(G), we say that G is an I-map (independency map) of P.
    • Theorem: If P factorized over G, then G is an I-map of P.

    Independence Factorization

    • Theorem: If G is an I-map for P, then P factorized over G.

    Summary

    • Two equivalent views of graph structure
      • Factorization: G allows P to be represented
      • I-map: Independencies encoded in G hold in P
    • If P factorizes over a graph G, we can read from the graph independencies that must hold in P (an independency map)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值