题目描述 Description
在一个操场上摆放着一排N堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
试设计一个算法,计算出将N堆石子合并成一堆的最小得分。
输出描述 Output Description
共一个数,即N堆石子合并成一堆的最小得分。
样例输入 Sample Input
4
1
1
1
1
样例输出 Sample Output
8
数据范围及提示 Data Size & Hint
对于 30% 的数据,1≤N≤100
对于 60% 的数据,1≤N≤1000
对于 100% 的数据,1≤N≤40000
对于 100% 的数据,1≤A≤200
思路:这个题非常经典,但省选也是够了,范围变得超大,先写了一个朴素的,过了三个点,又写了一个四边形优化,只多过了2个点,后来才知道这个题有专门的做法—- GarsiaWachs;
设一个序列是A[0..n-1],每次寻找最小的一个满足A[k-1]<=A[k+1]的k,(方便起见设A[-1]和A[n]等于正无穷大)
那么我们就把A[k]与A[k-1]合并,之后找最大的一个满足A[j]>A[k]+A[k-1]的j,把合并后的值A[k]+A[k-1]插入A[j]的后面。
有定理保证,如此操作后问题的答案不会改变。
举个例子:
186 64 35 32 103
因为35<103,所以最小的k是3,我们先把35和32删除,得到他们的和67,寻找超过67的数,把67插入到他后面
序列就成为了:
186 67 64 103 (有定理保证这个序列的答案加上67就等于原序列的答案)
现在由5个数变为4个数了,继续!
变成了:
186 131 103
现在k=2(别忘了,设A[-1]和A[n]等于正无穷大)
234 186
420
最后的答案呢?就是各次合并