FCOS加入ASFF的Attention机制

本文介绍了将ASFF注意力机制融入FCOS检测框架的方法,通过修改fpn.py实现结构增强。

FCOS加入ASFF加权结构

这里是我对FCOS的结构加入了ASFF的Attention机制,将FCOS中fpn.py替换为下面代码即可。

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn


class ASFF(nn.Module):
    def __init__(self, level, rfb=False, vis=False):
        super(ASFF, self).__init__()
        self.level = level
        # self.dim = [512, 256, 256]
        self.dim = [256, 256, 256]
        self.inter_dim = self.dim[self.level]
        if level == 0:
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            # self.expand = add_conv(self.inter_dim, 1024, 3, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)
        elif level == 1:
            # self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.compress_level_0 = add_conv(256, self.inter_dim, 1, 1)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            # self.expand = add_conv(self.inter_dim, 512, 3, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)
        elif level == 2:
            # self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.compress_level_0 = add_conv(256, self.inter_dim, 1, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)

        # when adding rfb, we use half number of channels to save memory
        compress_c = 8 if rfb else 16

        self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(
            compress_c * 3, 3, kernel_size=1, stride=1, padding=0)
        self.vis = vis

    def forward(self, x_level_0, x_level_1, x_level_2):
        # import ipdb
        # ipdb.set_trace()
        if self.level == 0:
            level_0_resized = x_level_0
            level_1_resized = 
### FCOS Object Detection Framework Introduction FCOS (Fully Convolutional One-Stage Object Detection) represents an innovative approach to object detection that does not rely on anchor boxes, which are commonly used in many other detectors like Faster R-CNN or RetinaNet. This design simplifies the training process and improves performance by directly predicting objects at each spatial location with various scales [^2]. The architecture of FCOS is built upon a backbone network followed by several feature pyramid networks (FPN). The FPN helps extract multi-scale features from different layers of the backbone model. For classification and regression tasks, separate convolutional branches operate independently without sharing parameters between them. In terms of loss function, FCOS employs two main components: one for bounding box regression using IoU-based losses such as GIoU Loss; another for centerness prediction to suppress low-quality detections while enhancing high-confidence predictions [^3]. For practical implementation purposes, here's how one might set up FCOS within popular deep learning frameworks: ```python import torch from mmdet.models import build_detector from mmcv import ConfigDict config = dict( type='FCOS', backbone=dict(type='ResNet', depth=50), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128])) detector = build_detector(ConfigDict(config)) ``` This code snippet demonstrates setting up an FCOS detector based on ResNet-50 as its backbone along with Feature Pyramid Network (FPN), configured specifically for COCO dataset categories [^4].
评论 25
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值