Leetcode74. 搜索二维矩阵
题目:
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
题解:
二分法
java代码:
/**
* 1.先判断目标值在第几行
* 2.再找到对应的位置
*
* @param matrix
* @param target
* @return
*/
public static boolean searchMatrix(int[][] matrix, int target) {
boolean flag = false;
int row = matrix.length;
int col = matrix[0].length;
int x = 0;
for (int i = 0; i < row; i++) {
if (target < matrix[i][0]) {
x = i - 1;
break;
} else if (target == matrix[i][0]) {
return true;
}
}
int left = 0;
int right = col - 1;
int mid;
while (left <= right) {
mid = left + (right - left) / 2;
if (target > matrix[x][mid]) {
left = mid + 1;
} else if (target < matrix[x][mid]) {
right = mid - 1;
} else {
return true;
}
}
return false;
}
public static boolean searchMatrix2(int[][] matrix, int target) {
int row = matrix.length;
int col = matrix[0].length;
int left = 0;
int right = row * col - 1;
int mid, m, n;
while (left <= right) {
mid = left + (right - left) / 2;
m = mid / col;
n = mid % col;
if (target == matrix[m][n]) {
return true;
} else if (target < matrix[m][n]) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return false;
}