Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
- Given target value is a floating point.
- You may assume k is always valid, that is: k ≤ total nodes.
- You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> res = new ArrayList<>();
Stack<Integer> s1 = new Stack<>();
Stack<Integer> s2 = new Stack<>();
get_predecessor(root, target, s1);
get_successor(root, target, s2);
while (k-- > 0) {
if (s1.isEmpty()) res.add(s2.pop());
else if (s2.isEmpty()) res.add(s1.pop());
else if (Math.abs(s1.peek() - target) < Math.abs(s2.peek() - target)) res.add(s1.pop());
else res.add(s2.pop());
}
return res;
}
private void get_predecessor(TreeNode root, double target, Stack<Integer> s1) {
if (root == null) return;
get_predecessor(root.left, target, s1);
if (root.val > target) return;
s1.push(root.val);
get_predecessor(root.right, target, s1);
}
private void get_successor(TreeNode root, double target, Stack<Integer> s2) {
if (root == null) return;
get_successor(root.right, target, s2);
if (root.val <= target) return;
s2.push(root.val);
get_successor(root.left, target, s2);
}