20、深入探索Skip - Gram模型与Word2Vec的应用

深入探索Skip - Gram模型与Word2Vec的应用

在自然语言处理领域,词嵌入是一项关键技术,它能够将文本中的词语转换为数值向量,从而让计算机更好地理解和处理文本。Skip - Gram模型是一种常用的词嵌入模型,下面我们将详细介绍如何实现Skip - Gram模型,并探讨Word2Vec在机器学习任务中的应用。

1. 实现Skip - Gram模型

实现Skip - Gram模型主要包括以下五个部分:
- 构建语料库词汇表
- 构建Skip - Gram [(目标词, 上下文词), 相关性]生成器
- 构建Skip - Gram模型架构
- 训练模型
- 获取词嵌入

1.1 构建语料库词汇表

首先,我们需要从语料库中提取每个唯一的单词,并为其分配一个唯一的标识符。以下是实现代码:

from keras.preprocessing import text
tokenizer = text.Tokenizer()
tokenizer.fit_on_texts(norm_bible)
word2id = tokenizer.word_index
id2word = {v:k for k, v in word2id.items()}
vocab_size = len(word2id) + 1
embed_size = 100
wids = [[word2id[w] for w in text.text_to_word_sequence(doc)] for doc in norm_bible]
print('Vocabular
Security-feature-detection-system 安全检测系统 简介 安全检测系统-多目标识别(YOLOv5)和人脸识别(Facenet)快速部署系统。 功能上:本项目使用YOLOv5实现多目标识别,使用Facenet实现人脸识别,最终需要人脸和此人应具备的多目标同时满足才能通过安全检测,部署上:使用pyqt5实现前端可视化,在前端页面运行YOLOv5多目标识别系统(将模型运行封装到Qt中),使用Docker封装人脸识别后端系统,使用网络请求等包实现前后端交互 案例:进行多目标识别的同时,进行人脸识别,前端系统发送请求,携带参数到后端进行人脸识别,最终返回人脸识别结果,获取人脸识别结果后,检索该成员应具备的多目标特征,YOLOv5多目标识别的实际结果进行比对,若无误则通过安全检测。 根据原作 https://pan.quark.cn/s/9784cdf4abfd 的源码改编 项目背景 出于一些比赛的需要,以及逃离懵懂状态开始探索,我于2023.12~2024.1(大二上)开始一些CV、LLM项目的研究,苦于能力有限,当时大部分的项目都是依托开源搭建而来,诸如本项目就是依托开源的Compreface和Yolov5搭建,我只不过做了缝合的工作,所以在此必须提及这两个项目的巨大贡献:https://.com/exadel-inc/CompreFace https://.com/ultralytics/yolov5 今天是2024.7.11(大二下暑假),时隔半年我才开始这个项目的开源工作是因为,半年前的水平有限,虽然自己能实现项目的运作,但是恐很多细节介绍不好,当然本文自发出,后续我还会跟进,欢迎指正:22012100039@stu.xidian.edu.c...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值