N-GRAM模型的概率公式

n-gram的n大小对性能的影响

  • n更大的时候
    n: 对下一个词出现的约束性信息更多,更大的辨别力,但是更稀疏,并且n-gram的总数也更多,为 V^n 个(V为词汇表的大小)
  • n更小的时候
  • 在训练语料库中出现的次数更多,更可靠的统计结果,更高的可靠性 ,但是约束信息更少

其中当N为特定值的时候,我们来看一下n-gram可能的总数,如下表:

对于上图,我用一个例子来进行解释,加入目前词汇表中就只有三个单词,”我爱你“,那么bigram的总数是3^2=9个,有”我我“,我爱,我你,爱爱,爱你,爱我,你你,你我,你爱这9个,所以对应上面的表示是bigrams是20000^2=400000000,trigrams=20000^3 = 8*10e12

好,到这里讲解了n-gram的基本内容了。

 

https://zhuanlan.zhihu.com/p/32829048

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值