| Time Limit:1000MS | Memory Limit:65536KB | 64bit IO Format:%I64d & %I64u |
Description
Vasya started to use the Internet not so long ago, so he hasonly two e-mail accounts at two different servers. For each of them he has a password, which is anon-empty string consisting of only lowercase latin letters. Both mail servers accept a string as a password if and only if the real password is its subsequence.
Vasya has a hard time memorizing both passwords, so he would like to come upwith a single universal password, which both servers would accept. Vasya can'tremember too long passwords, hence he is interested in a universal passwordof a minimal length. You are to help Vasya to find the number of such passwords.
Input
The input consists of 2 lines, each of them containing the real password for one of the servers. The length of each password doesn't exceed 2000 characters.
Output
Output the number of universal passwords of minimal length modulo 10
9 + 7.
Sample Input
| input | output |
|---|---|
b ab | 1 |
abcab cba | 4 |
Hint
In the second sample, the passwords of minimal length are the following:
abcaba, abcbab, acbcab, cabcab.
开始拿到这个题目没有思路,忽然发现这个题目很想最长公共子序列,而且长度 为 2000,如果想 dp 求最长公共子序列那样肯定O(n^2) 肯定可以解决
于是我试着在纸上模拟求解LIS,顺着求LIS的路径竟然推出了样例
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=2010;
const int mod=1000000007;
int dp[maxn][maxn],num[maxn][maxn];
char s1[maxn],s2[maxn];
int main()
{
while(scanf("%s %s",s1+1,s2+1)==2)
{
//cout<<"bug"<<endl;
int len1=strlen(s1+1),len2=strlen(s2+1);
for(int i=1;i<=len2;i++) num[0][i]=1,dp[0][i]=i;
for(int i=1;i<=len1;i++) num[i][0]=1,dp[i][0]=i;
dp[0][0]=0;
num[0][0]=1;
//cout<<len1<<" "<<len2<<endl;
for(int i=1;i<=len1;i++)
for(int j=1;j<=len2;j++)
if(s1[i]==s2[j]) dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);
for(int i=1;i<=len1;i++)
for(int j=1;j<=len2;j++)
{
num[i][j]=0;
if(s1[i]==s2[j]) num[i][j]=(num[i][j]+num[i-1][j-1])%mod;
else{
if(dp[i][j]==dp[i-1][j]+1) num[i][j]=(num[i][j]+num[i-1][j])%mod;
if(dp[i][j]==dp[i][j-1]+1) num[i][j]=(num[i][j]+num[i][j-1])%mod;
}
}
printf("%d\n",num[len1][len2]);
}
return 0;
}
本文介绍了一种算法,用于找到两个不同邮件服务器接受的最短通用密码的数量。通过动态规划方法,结合最长公共子序列思想,实现了高效求解。
1690

被折叠的 条评论
为什么被折叠?



