ray.rllib 入门实践-4: 构建算法

        在前面的博客 ray.rllib 入门实践-2:配置算法-优快云博客 介绍了ray.rllib中的几种配置算法的方法,在示例代码中同步给出了构建(build)算法的方法,但是没有对构建算法的方式进行归纳介绍。

        本博客主要梳理ray.rllib中,从config生成可训练的algorithm的几种方式。

环境配置:

        torch==2.5.1

        ray==2.10.0

        ray[rllib]==2.10.0

        ray[tune]==2.10.0

        ray[serve]==2.10.0

        numpy==1.23.0

        python==3.9.18

方式1 : algo = AlgorithmConfig().build()

示例 1: 

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print

## 配置算法
storage_path = "F:/codes/RLlib_study/ray_results/build_method_3"
config = PPOConfig()
config = config.rollouts(num_rollout_workers=2)
config = config.resources(num_gpus=0,num_cpus_per_worker=1,num_gpus_per_worker=0)
config = config.environment(env="CartPole-v1",env_config={})
config.o
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值