Pairs Forming LCM(素因子分解+lcm)

本文探讨了在给定范围内寻找特定条件下的数对(a, b),使得它们的最小公倍数等于给定整数 n 的高效算法。通过深入分析数论知识,特别是素因子分解和gcd/lcm的性质,文章提供了优化的时间复杂度解决方案,并通过代码实例展示了实现过程。同时,介绍了如何利用代码计算满足条件的数对数量,特别关注于避免直觉上可能的高时间复杂度问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:在a,b中(a,b<=n)(1 ≤ n ≤ 1014),有多少组(a,b)  (a<b)满足lcm(a,b)==n;

 MY NEW BLOG

先来看个知识点:

素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en

for i in range(1,n):

        ei 从0取到ei的所有组合

必能包含所有n的因子。

现在取n的两个因子a,b

a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an

b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn

gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

哈哈,又多了种求gcd,lcm的方法。

 

题解:

先对n素因子分解,n = p1 ^ e1 * p2 ^ e2 *..........*pk ^ ek,

lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pk ^ max(ak,bk)

所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek

当ai == ei时,bi可取 [0, ei] 中的所有数  有 ei+1 种情况,bi==ei时同理。

那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
除了 (n, n) 所有的情况都出现了两次  那么满足a<=b的有 (2*ei + 1)) / 2 + 1 

 

 

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e7+5;
const int NN=1e6;
unsigned int prime[NN],cnt;           //prime[N]会MLE
bool vis[N];

void is_prime()
{
    cnt=0;
    memset(vis,0,sizeof(vis));
    for(int i=2;i<N;i++)
    {
        if(!vis[i])
        {
            prime[cnt++]=i;
            for(int j=i+i;j<N;j+=i)
            {
                vis[j]=1;
            }
        }
    }
}

int main()
{
    is_prime();
    int t;
    cin>>t;
    for(int kase=1;kase<=t;kase++)
    {
        LL n;
        cin>>n;
        int ans=1;
        for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++)
        {
            if(n%prime[i]==0)
            {
                int e=0;
                while(n%prime[i]==0)
                {
                    n/=prime[i];
                    e++;
                }
                ans*=(2*e+1);
            }
        }
        if(n>1)
            ans*=(2*1+1);
        printf("Case %d: %d\n",kase,(ans+1)/2);
    }
}



Pairs Forming LCM

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Submit Status

Description

Find the result of the following code:

long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

Output

For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Sample Output

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值