【DP计划】11.4——[BZOJ]逆序对数列(前缀和优化DP)EXTREMELY EASY

探讨了如何计算特定逆序对数量的自然数数列总数,通过动态规划方法优化算法,实现对大规模数据的有效处理。

Description
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
Input
第一行为两个整数n,k。

Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input
4 1
Sample Output
3

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

100%的数据 n<=1000,k<=1000


我们只要知道怎么构筑这个排列即可。
假设我们现在拥有一个从1到n的正序排列,那么它的逆序对数为0。那么从左向右每次将某一个数左移x位,那么就会产生x个逆序对。因此设f[i][j]f[i][j]f[i][j]表示当前已经到了第iii位,已经左移了jjj位(也就是产生了jjj个逆序对)的方案数,那么转移方程就是
f[i][j]+=f[i-1][k]   //k∈[j-i+1,j] (因为位置为i-1的点最多只能左移i-2位)
于是直接暴力转移是O(n3)O(n^3)O(n3)的。但是显然kkk属于一段区间,因此可以进行前缀和优化,及对于f[i−1]f[i-1]f[i1]计算前缀和即可。于是复杂度变为O(n2)O(n^2)O(n2)
#include<bits/stdc++.h>
#define MD 10000
using namespace std;
int read(){
    char c;int x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
int n,k,f[1005][1005],sum[1005];
int main()
{
    n=read();k=read();
    f[1][0]=1;for(int i=0;i<=k;i++) sum[i]=1;
    for(int i=2;i<=n;i++){
        f[i][0]=1;
        for(int j=1;j<=k;j++){
            int x=max(0,j-i+1)-1;
            (f[i][j]+=sum[j]-sum[x])%=MD;
        }
        for(int j=0;j<=k;j++) sum[j]=sum[j-1]+f[i][j];
    }
    printf("%d",f[n][k]);
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值