[Leetcode] 211 & 208 Trie Tree

本文介绍了Trie树(字典树)的数据结构及其在LeetCode题目211和208中的应用,并通过示例代码详细展示了如何实现Trie树的插入、搜索和前缀匹配等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[Leetcode] 211 & 208 Trie Tree

Trie

In computer science, a trie, also called digital tree and sometimes radix tree or prefix tree (on the ground that they can be searched by prefixes), is a kind of search tree. Unlike binary tree, no node in the tree stores the key associated with that node; instead, its position in the tree defines the key with which it is associated. All the descendants of a node have a common prefix of the string associated with that node, and the root is associated with the empty string. Values are not necessarily associated with every node. Rather, values tend only to be associated with leaves, and with some inner nodes that correspond to keys of interest.

Problem description

211. Add and Search Word - Data structure design
208. Implement Trie (Prefix Tree)

As the above two question shown, it won’t be easy to solve it by brutal force because it will spend too much time. However, Trie is a effective data structure which can be used to solve such questions. Just think about that, I want to find a word if it has been inserted into the tree, then if I can find that there isn’t any word with the same prefix as the word, which I want to find, in the tree, then I can definitely make a conclusion the word doesn’t be inserted.

To construct Trie is easy and simple, just like the below figure shown. However, we have to accept that the trie is not a perfect solution as it sacrifices space to save time. For any node, it has to store (26 * 4 + 1) Bytes. Compared with the heavily time cost, it will be OK.

Stary 2017-10-12 at 10.32.40 A

Q:208

This question is about implementing the function of Trie tree.
The data struct of tree node is important. As the below code shown, the node store a boolean value which represents if it is an end of word and an array of pointer of node which represents the successors.

struct TreeNodes {
    bool isWord;
    struct TreeNodes *next[MAX];
    TreeNodes() { 
        isWord = false;
        for (int i = 0; i < MAX; i++) {
            next[i] = nullptr;
        }
    }
};

The whole code:

#include <iostream>
#define MAX 26
using namespace std;

struct TreeNodes {
    bool isWord;
    struct TreeNodes *next[MAX];
    TreeNodes() { 
        isWord = false;
        for (int i = 0; i < MAX; i++) {
            next[i] = nullptr;
        }
    }
};

class Trie {
private:
    TreeNodes *root;
public:
    /** Initialize your data structure here. */
    Trie() {
        this->root = new TreeNodes();
    }

    /** Inserts a word into the trie. */
    void insert(string word) {
        TreeNodes* temp = this->root;
        for (auto ch : word) {
            if (temp->next[ch - 'a'] == nullptr) {
                temp->next[ch - 'a'] = new TreeNodes();
            }
            temp = temp->next[ch - 'a'];
        }
        temp->isWord = true;
    }

    /** Returns if the word is in the trie. */
    bool search(string word) {
        TreeNodes* temp = this->root;
        for (auto ch : word) {
            if (temp->next[ch - 'a'] == nullptr) {
                return false;
            } else {
                temp = temp->next[ch - 'a'];
            }
        }
        return temp->isWord;
    }

    /** Returns if there is any word in the trie that starts with the given prefix. */
    bool startsWith(string prefix) {
        TreeNodes* temp = this->root;
        for (auto ch : prefix) {
            if (temp->next[ch - 'a'] == nullptr) {
                return false;
            } else {
                temp = temp->next[ch - 'a'];
            }
        }
        return temp != nullptr;
    }
};

int main() {
    Trie tree;
    tree.insert("abc");
    cout << tree.search("abc") << endl;
    cout << tree.startsWith("ab") << endl;
    return 0;
}

The Time Complexity: O(n) (for every function)

Q:211

This question is about how to use Trie tree to implement non-definitely search pattern. As the ‘.’ can represent any character in lower case. So it is necessary to change a bit. I think it is feasible to use recursion to search. If I encounter a char ‘.’, I just ignore that char and continue to search next char.

class WordDictionary {
private:
    TreeNodes *root;
    bool search(string word, TreeNodes* temp) {
        if (word.length() == 0) {
            return temp->isWord;
        } else {
            if (word[0] == '.') {
                bool isWord = false;
                for (int i = 0; i < MAX; i++) {
                    if (temp->next[i] != nullptr) {
                        isWord |= search(word.substr(1), temp->next[i]);
                    }
                }
                return isWord;
            } else {
                if (temp->next[word[0] - 'a'] != nullptr) {
                    return search(word.substr(1), temp->next[word[0] - 'a']);
                } else {
                    return false;
                }
            }
        }
    }
public:
    /** Initialize your data structure here. */
    WordDictionary() {
        root = new TreeNodes();
    }

    /** Adds a word into the data structure. */
    void addWord(string word) {
        TreeNodes *temp = root;
        for (auto ch : word) {
            if (temp->next[ch - 'a'] == nullptr) {
                temp->next[ch - 'a'] = new TreeNodes();
            }
            temp = temp->next[ch - 'a'];
        }
        temp->isWord = true;
    }

    /** Returns if the word is in the data structure. A word could contain the dot character '.' to represent any one letter. */
    bool search(string word) {
        TreeNodes *temp = root;
        return search(word, root);
    }
};

Time Complexity: O(n)

Improvement

However, it doesn’t have to use Trie tree. The solution can be very easy just use map. Just the code shown, the data structure map can store the length of word as key, and the set of word with the corresponding length of word as value, Then it will be efficient to search. It will be better to use unorder_map because we don’t need to keep the ordered map.

class WordDictionary {
public:
    /** Initialize your data structure here. */
    WordDictionary() {

    }

    /** Adds a word into the data structure. */
    void addWord(string word) {
        map[(int)word.length()].insert(word);
    }

    /** Returns if the word is in the data structure. A word could contain the dot character '.' to represent any one letter. */
    bool search(string word) {
        int len = word.length();

        for (auto& s: map[len]) {
            bool flag = true;
            for (int i=0; i<s.length(); i++) {
                if (word[i] == '.')
                    continue;
                if (word[i] != s[i]) {
                    flag = false;
                    break;
                }
            }
            if (flag)
                return true;
        }

        return false;
    }

private:
    unordered_map<int, unordered_set<string>> map;
};

1

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(&ldquo;key=value&rdquo;)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值