KNN算法
“物以类聚,人以群分”相似的数据往往拥有相同的类别
其大概原理就是一个样本归到哪一类,当前样本需要归到频次最高的哪个类去
也就是说有一个待分类的样本,然后跟他周围的k个样本来看,k中哪一个类最多,待分类的样本就是哪一个。
那就以手写数字识别为例吧
import matplotlib.pyplot as plt
import numpy as np
import os
#%%
# 读入mnist数据集
m_x = np.loadtxt('./data/mnist_x', delimiter=' ')
m_y = np.loadtxt('./data/mnist_y')
#%%
# 数据集可视化
data = np.reshape(np.array(m_x[0], dtype=int), [28, 28])
plt.figure()
plt.imshow(data, cmap='gray')
#%%
# 将数据集分为训练集和测试集
ratio = 0.8
split = int