石子合并石子合并石子合并
Description
在一个操场上一排地摆放着N堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。请设计一个程序,计算出将N堆石子合并成一堆的最小得分。
Input
每组数据第1行为一个正整数N(2<=N<=100),以下N行,每行一个正整数,小于10000,分别表示第i堆石子的个数(1<=i<=N)。
Output
对于每组数据输出一个正整数,即最小得分
Sample Input
7
13
7
8
16
21
4
18
Sample Output
239
解题方法:
这道题我们可以用两个方法来做,两种方法分别如下:
方法1:先枚举边界,再枚举中间的断点,将断点两边的分值加在一起,再加上当前的分值
#include<iostream>
using namespace std;
int main()
{
int a[100],f[100][100],n,o;
cin>>n;
for (int i=1;i<=n;i++)
{
cin>>o;
a[i]=a[i-1]+o;
}
memset(f,127/3,sizeof(f));
for (int i=1;i<=n;i++) f[i][i]=0;
for (int i=n-1;i>=1;i--)
for (int j=i+1;j<=n;j++)
for (int c=i;c<j;c++)
f[i][j]=min(f[i][j],f[i][c]+f[c+1][j]+a[j]-a[i-1]);
cout<<f[1][n];
}
方法2: 先枚举长度,再枚举前面的边界和断点,后面的边界就是前面的边界+长度-1,以此类推,算出结果
#include<cstdio>
#include<iostream>
using namespace std;
int x,n,a[100],f[100][100];
int main()
{
scanf("%d",&n);
memset(f,127/3,sizeof(f));
for (int i=1;i<=n;i++)
{
scanf("%d",&x);
a[i]=a[i-1]+x;
f[i][i]=0;
}
for (int i=2;i<=n;i++)
for (int j=1;j<=n-i+1;j++)
for (int k=j;k<=j+i-2;k++)
f[j][i+j-1]=min(f[j][i+j-1],f[j][k]+f[k+1][j+i-1]+a[j+i-1]-a[j-1]);
printf("%d",f[1][n]);
}