nlog2m=mlog2n(1)n^{\log_2m} = m^{\log_2n} \tag{1}nlog2m=mlog2n(1)
证明:
nlog2m=mlogmnlog2m=mlog2m×logmnn^{\log_2m} = m^{\log_m{n^{\log_2m}}} \\
=m^{\log_2m\times \log_mn}nlog2m=mlogmnlog2m=mlog2m×logmn
换底公式
:logmb=lognblognm\log_mb=\frac{\log_nb}{\log_nm}logmb=lognmlognb
带入换底公式
:
mlog2m×logmn=mlog2m×log2nlog2m=mlog2nm^{\log_2m\times \log_mn} =m^{\log_2m\times \frac{\log_2n}{\log_2m}} \\
=m^{\log_2n}mlog2m×logmn=mlog2m×log2mlog2n=mlog2n