【leetcode】435. Non-overlapping Intervals【M】

本文介绍了一个算法问题,即如何找出并移除一组区间中的最小数量的区间,使得剩下的区间不再相互重叠。通过示例说明了如何使用贪心算法解决该问题,并提供了Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Note:

  1. You may assume the interval's end point is always bigger than its start point.
  2. Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.

Example 1:

Input: [ [1,2], [2,3], [3,4], [1,3] ]

Output: 1

Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.

Example 2:

Input: [ [1,2], [1,2], [1,2] ]

Output: 2

Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.

Example 3:

Input: [ [1,2], [2,3] ]

Output: 0

Explanation: You don't need to remove any of the intervals since they're already non-overlapping.

思路:贪心 算法,以每个元素的end为关键元素排序,end相等的情况下,按start升序排序。这里的实际类型和这个问题很像


非常重要的是对类进行排序


# Definition for an interval.
# class Interval(object):
#     def __init__(self, s=0, e=0):
#         self.start = s
#         self.end = e

class Solution(object):
    def eraseOverlapIntervals(self, intervals):
        
        if not intervals: return 0
        intervals.sort(key=lambda x: x.start)
        
        res = 0
        end = intervals[0].end
        
        for i in intervals[1:]:
            #print i.start,i.end
            if i.start < end:
                res += 1
                end = min(end,i.end)
            else:
                end = i.end
        return res


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值