对于机器在内网,无法连接互联网的服务器来说,想要部署体验开源的大模型,需要拷贝各种依赖文件进行环境搭建难度较大,本文介绍如何通过制作docker镜像的方式,通过llama.cpp实现量化大模型的快速内网部署体验。
一、llama_cpp介绍
LLaMA 全称是Large Language Model Meta AI,是由Meta AI(原FacebookAI研究实验室)研究人员发布的一个预训练语言模型。该模型最大的特点就是基于以较小的参数规模取得了优秀的性能,模型参数量从7B到65B, 与其他大型语言模型一样,LLaMA的工作原理是将一连串的单词作为输入,并预测下一个单词,以递归地生成文本。
LLaMA.cpp 项目是开发者 Georgi Gerganov 基于 Meta 的 LLaMA 模型实现的纯 C/C++ 版本,用于模型推理。 无需任何额外依赖,相比 Python 代码对 PyTorch 等库的要求,C/C++ 直接编译出可执行文件,跳过不同硬件的繁杂准备,可以在笔记本上运行,大大降低了门槛。
项目开源地址:GitHub - ggerganov/llama.cpp: Port of Facebook's LLaMA model in C/C++
二、镜像制作过程
1、下载基础镜像
在dockerhub上下载对应的镜像版本,关注需要的cuda版本和操作系统版本。
docker pull nvidia/cuda:11.2.2-devel-ubuntu20.04
运行镜像
docker run -id --gpus all -v D:\download:/app/model -p 8080:8080&nbs