Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 7752 | Accepted: 3047 |
Description
Input
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
Output
Sample Input
2 3 0 0 0 1 1 1 1 2 1 3 2 1 2 3 3 1 3 2 0 0 3 0 0 0 1 0 1 1 2 2 1 0 0
Sample Output
4 Oh,it's impossible~!!
Hint
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
某些开关的动作可能影响另一些开关的状态,因此以开关为节点,如果存在这种关系就加入一条有向边,这样就构成了一个图,可以用邻接矩阵表示。当某个开关按下时,其自身状态改变,受其影响的开关的状态也改变。
用两个N维向量表示初始状态和结束状态,两者逐个元素异或,就得到了开关状态的变化。
以第一个样例输入为例分析,3个开关,两两相连,初始状态000,最终状态111,开关对应的邻接矩阵为
将对角线的0全部换成1,得矩阵A=
将矩阵每一列想象为一个开关按下后产生的效果(1表示状态翻转,0表示不变),比如,第二列就表示按下第二个开关,则第二个开关的本身状态要改变(这就是把对角线0换成1的原因),受第二个开关影响的开关j状态也要改变,恰好对应邻接矩阵中A[j, 2]=1
把A写成分块矩阵的形式,每一列作为一个子矩阵,则有A=[a1,a2, a3],此处ai均为列向量,设第i个开关按下次数为xi,xi=0或1(开关按两下和没按是等效的,0/1就够了)
记初始状态b0=[0,0,0],最终状态b1=[1,1,1],则状态变化b=b0^b1=[1,1,1],这里b也是列向量。目标就是求x1a1 + x2a2 +x3a3 = b的解的个数(此处的加是模2加,也就是异或,下同)
这个方程可以写成
下面就是解这个线性方程组
对增广矩阵[A b]做初等行变换,化成阶梯形(高斯消元法),如果存在[0,0,…,0,1]的行,就是无解;如果存在r行[0,0,…,0,0],就意味着有r个自由变量,因为这里的变量只取0/1,所以有2r个解;如果不存在[0,0,…,0,*],即把最后一行去掉后不存在全0行,则A为满秩矩阵,则方程组有唯一解。
如果不理解这个地方,建议找本线性代数书,看一下线性方程组的解法,解的结构,通解
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
const int MAXN=50;
const int mod = 2;//可改
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
/*
void Debug(int equ,int var)
{
int i, j;
for (i = 0; i < equ; i++)
{
for (j = 0; j < var + 1; j++)
{
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
*/
inline int gcd(int a,int b)
{
int t;
while(b!=0)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;//先除后乘防溢出
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
for(int i=0;i<=var;i++)
{
x[i]=0;
free_x[i]=true;
}
//转换为阶梯阵.
col=0; // 当前处理的列
for(k = 0;k < equ && col < var;k++,col++)
{// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+1;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{// 与第k行交换.
for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0)
{// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+1;i<equ;i++)
{// 枚举要删去的行.
if(a[i][col]!=0)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
for(j=col;j<var+1;j++)
{
a[i][j] = (mod + (a[i][j]%mod)*ta - (a[k][j]%mod)*tb)%mod;
}
}
}
}
//Debug(equ,var);
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if ( (a[i][col]%mod) != 0) return -1;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var)
{
// 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
for (i = k - 1; i >= 0; i--)
{
// 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
// 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
for (j = 0; j < var; j++)
{
if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
}
if (free_x_num > 1) continue; // 无法求解出确定的变元.
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
temp = a[i][var];
for (j = 0; j < var; j++)
{
if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
}
x[free_index] = temp / a[i][free_index]; // 求出该变元.
free_x[free_index] = 0; // 该变元是确定的.
}
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - 1; i >= 0; i--)
{
temp = a[i][var];
for (j = i + 1; j < var; j++)
{
if (a[i][j] != 0) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return 0;
}
int main(){
int T;
scanf("%d",&T);
int equ,var;
int st[50],ed[50];
int ii,jj;
while(T--){
scanf("%d",&equ);
var = equ;
for(int i=0; i<equ; i++)
scanf("%d",&st[i]);
for(int i=0; i<equ; i++)
scanf("%d",&ed[i]);
memset(a,0,sizeof(a));
while(~scanf("%d %d",&ii,&jj) && ii)
a[jj-1][ii-1] = 1;
for(int i=0; i<equ; i++)
a[i][i] = 1;
for(int i=0; i<equ; i++)
a[i][equ] = (st[i]+ed[i])%mod;
int free_sum = Gauss(equ,var);
if(free_sum<0)
printf("Oh,it's impossible~!!\n");
else
printf("%d\n",1<<free_sum);
}
return 0;
}