ABC 387
A, B题都是水题,D为有限制的DFS其中DFS写法可以借鉴, C较难, EFG没做
A - Happy New Year 2025
https://atcoder.jp/contests/abc387/tasks/abc387_a
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using u128 = unsigned __int128;
typedef double lf;
typedef long double Lf;
const int MAXN = 2e5 + 5, MOD = 1e9 + 7, MAXP = 31, inf = 0x3f3f3f3f;
const i64 INF = 1e18;
const double eps = 1e-6;
void solve() {
int a, b;
cin >> a >> b;
cout << (int)pow(a + b, 2) << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
t = 1;
while(t--){
solve();
}
return 0;
}
B - 9x9 Sum
https://atcoder.jp/contests/abc387/tasks/abc387_b
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using u128 = unsigned __int128;
typedef double lf;
typedef long double Lf;
const int MAXN = 2e5 + 5, MOD = 1e9 + 7, MAXP = 31, inf = 0x3f3f3f3f;
const i64 INF = 1e18;
const double eps = 1e-6;
void solve() {
int x;
cin >> x;
int sum = 0;
for (int i = 1; i <= 9; i++)
for (int j = 1; j <= 9; j++) {
if (i * j != x) {
sum += i * j;
}
}
cout << sum << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
t = 1;
while(t--){
solve();
}
return 0;
}
C - Snake Numbers
https://atcoder.jp/contests/abc387/tasks/abc387_c
题目数据很大考虑前缀和思想减少时间复杂度,设 f ( x ) f(x) f(x)为从 0 到整数 x 的蛇形数,那么计算从L 到 R的蛇形数就可以转化成计算 f ( R ) − f ( L − 1 ) f(R) - f(L - 1) f(R)−f(L−1)
接下去对从 0 到整数 x 的蛇形数考虑几种情况:
设 t 为 0 到 x 的中间数
l e n ( t ) len(t) len(t)为整数 t 的长度
l e n ( x ) len(x) len(x)为整数 x 的长度
Case 1:当 l e n ( t ) len(t) len(t) < l e n ( x ) len(x) len(x)那么只需要枚举长度 t (t >= 2)以及首位 t[0]
Case 2:当 l e n ( t ) = l e n ( x ) len(t)=len(x) len(t)=len(x)并且 t [ 0 ] ≠ x [ 0 ] t[0]{\neq}x[0] t[0]=x[0]枚举 t 从 1 到 x[0]
Case 3:当 l e n ( t ) = l e n ( x ) len(t) = len(x) len(t)=len(x)并且 t [ 0 ] = x [ 0 ] t[0]=x[0] t[0]=x[0]假设从第二位开始到第 i 位出现不同,那么t[i]应该取 m i n ( x [ 0 ] , x [ i ] ) min(x[0], x[i]) min(x[0],x[i])因为t[i]要小于x[0]并且 t 不能大于 x,如果出现x[i] > x[0]即第 i + 1 位开始会出现前 i 个数字中有数字大于等于 x[0] 所以要结束循环
Case 4:前面考虑的都是每一位可能出现 t [ i ] ≠ x [ i ] t[i] \neq x[i] t[i]=x[i]的情况,然后 t 与 x 完全相等的情况下,如果也符合蛇形数那么再+1,可以在Case 3中判断是否+1,如果Case 3中没有出现过大于等于的情况证明完全相等并且符合蛇形数那么+1
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
using ll = long long;
using ui = unsigned int;
using ull = unsigned long long;
using u128 = unsigned __int128;
typedef double lf;
typedef long double Lf;
const int MAXN = 2e5 + 5, MOD = 1e9 + 7, MAXP = 31, inf = 0x3f3f3f3f;
const ll INF = 1e18;
const double eps = 1e-6;
int get_len(ll x) {
int ans = 0;
while (x) {
x /= 10;
ans += 1;
}
return ans;
}
int get_hightest_digit(ll x) {
while (x > 9) {
x /= 10;
}
return x;
}
ll Pow(ll a, ll b) {
ll ans = 1;
for (ll i = 1; i <= b; i++)
ans *= a;
return ans;
}
int get_digit(ll x, int i) {
int len = get_len(x);
for (int j = 1; j <= len - i; j++) {
x /= 10;
}
return x % 10;
}
ll sum(ll R) {
ll ans = 0;
ll kR = get_len(R);
if (kR <= 1) return 0;
// case 1 k < kR
for (ll k = 2; k < kR; k++) {
for (int t = 1; t <= 9; t++) {
ans += Pow(t, k - 1);
}
}
// case 2
int tR = get_hightest_digit(R);
for (int t = 1; t < tR; t++) {
ans += Pow(t, kR - 1);
}
// case 3
bool flag = true;
for (int i = 2; i <= kR; i++) {
int cur_digit = get_digit(R, i);
ans += Pow(tR, kR - i) * min(cur_digit, tR);
if (cur_digit > tR - 1) {
flag = false;
break;
}
}
// case 4
if (flag) ans++;
return ans;
}
void solve() {
ll L, R;
cin >> L >> R;
ll sum1 = sum(R);
ll sum2 = sum(L - 1);
cout << sum1 - sum2 << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
t = 1;
while(t--){
solve();
}
return 0;
}
D - Snaky Walk
https://atcoder.jp/contests/abc387/tasks/abc387_d
有点限制的DFS+最短路
假设第一步垂直走,那么奇数步就是垂直走,偶数步就是水平走,第一步水平走也一样。
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
using ll = long long;
using ui = unsigned;
using ull = unsigned long long;
using u128 = unsigned __int128;
typedef double lf;
typedef long double Lf;
const int MAXN = 2e5 + 5, MOD = 1e9 + 7, MAXP = 31, inf = 0x3f3f3f3f;
const ll INF = 1e18;
const double eps = 1e-6;
void solve() {
int h, w;
cin >> h >> w;
vector<string> s(h);
for (int i = 0; i < h; i++)
cin >> s[i];
int sx, sy, gx, gy;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if (s[i][j] == 'S') {
sx = i;
sy = j;
}
if (s[i][j] == 'G') {
gx = i;
gy = j;
}
}
}
int ans = inf;
vector<vector<pair<int, int>>> moves(2);
moves[0] = {
{0, 1},
{0, -1}
};
moves[1] = {
{1, 0},
{-1, 0}
};
for (int p = 0; p < 2; p++) {
vector d(h, vector<int>(w, inf));
d[sx][sy] = 0;
queue<pair<int, int>> q;
q.emplace(sx, sy);
while (!q.empty()) {
auto [i, j] = q.front();
q.pop();
for (auto [di, dj] : moves[(i + j + p) & 1]) {
int ni = i + di, nj = j + dj;
if (ni < 0 || ni >= h || nj < 0 || nj >= w) {
continue;
}
if (s[ni][nj] == '#') continue;
if (d[ni][nj] == inf) {
d[ni][nj] = d[i][j] + 1;
q.emplace(ni, nj);
}
}
}
ans = min(ans, d[gx][gy]);
}
if (ans == inf) ans = -1;
cout << ans << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
t = 1;
while(t--){
solve();
}
return 0;
}